Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831039

RESUMEN

Transcription factors (TFs) orchestrate gene expression programs crucial for brain function, but we lack detailed information about TF binding in human brain tissue. We generated a multiomic resource (ChIP-seq, ATAC-seq, RNA-seq, DNA methylation) on bulk tissues and sorted nuclei from several postmortem brain regions, including binding maps for more than 100 TFs. We demonstrate improved measurements of TF activity, including motif recognition and gene expression modeling, upon identification and removal of high TF occupancy regions. Further, predictive TF binding models demonstrate a bias for these high-occupancy sites. Neuronal TFs SATB2 and TBR1 bind unique regions depleted for such sites and promote neuronal gene expression. Binding sites for TFs, including TBR1 and PKNOX1, are enriched for risk variants associated with neuropsychiatric disorders, predominantly in neurons. This work, titled BrainTF, is a powerful resource for future studies seeking to understand the roles of specific TFs in regulating gene expression in the human brain.

2.
Am J Hum Genet ; 111(2): 259-279, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232730

RESUMEN

Tauopathies are a group of neurodegenerative diseases defined by abnormal aggregates of tau, a microtubule-associated protein encoded by MAPT. MAPT expression is near absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression could be controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding disease risk and pathogenesis. Here, we performed chromatin conformation assays (HiC & Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27ac and CTCF in NPCs and differentiated neurons to nominate candidate cis-regulatory elements (cCREs). We assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in neurodegeneration-affected individuals and control subjects. We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the H1/H2 haplotype inversion breakpoint. We also found that rare and predicted damaging genetic variation in nominated CREs was nominally depleted in dementia-affected individuals relative to control subjects, consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduced MAPT expression, may be protective against neurodegenerative disease. Overall, this study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.


Asunto(s)
Enfermedades Neurodegenerativas , Proteínas tau , Humanos , Cromatina/genética , Haplotipos , Enfermedades Neurodegenerativas/genética , Neuronas , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas tau/genética
3.
bioRxiv ; 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37090552

RESUMEN

Background: Tauopathies are a group of neurodegenerative diseases driven by abnormal aggregates of tau, a microtubule associated protein encoded by the MAPT gene. MAPT expression is absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression is controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding genetic risk factors. Methods: We performed HiC, chromatin conformation capture (Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27Ac and CTCF in NPCs and neurons differentiated from human iPSC cultures. We nominated candidate cis-regulatory elements (cCREs) for MAPT in human NPCs, differentiated neurons, and pure cultures of inhibitory and excitatory neurons. We then assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in AD cases and controls. Results: Using orthogonal genomics approaches, we nominated 94 cCREs for MAPT, including the identification of cCREs specifically active in differentiated neurons. Eleven regions enhanced reporter gene transcription in luciferase assays. Using CRISPRi, 5 of the 94 regions tested were identified as necessary for MAPT expression as measured by RT-qPCR and RNA-seq. Rare and predicted damaging genetic variation in both nominated and confirmed CREs was depleted in AD cases relative to controls (OR = 0.40, p = 0.004), consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduce MAPT expression, may be protective against neurodegenerative disease. Conclusions: We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the well-described H1/H2 haplotype inversion breakpoint. This study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.

4.
Cell Genom ; 3(3): 100263, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36950385

RESUMEN

Cell type-specific transcriptional differences between brain tissues from donors with Alzheimer's disease (AD) and unaffected controls have been well documented, but few studies have rigorously interrogated the regulatory mechanisms responsible for these alterations. We performed single nucleus multiomics (snRNA-seq plus snATAC-seq) on 105,332 nuclei isolated from cortical tissues from 7 AD and 8 unaffected donors to identify candidate cis-regulatory elements (CREs) involved in AD-associated transcriptional changes. We detected 319,861 significant correlations, or links, between gene expression and cell type-specific transposase accessible regions enriched for active CREs. Among these, 40,831 were unique to AD tissues. Validation experiments confirmed the activity of many regions, including several candidate regulators of APP expression. We identified ZEB1 and MAFB as candidate transcription factors playing important roles in AD-specific gene regulation in neurons and microglia, respectively. Microglia links were globally enriched for heritability of AD risk and previously identified active regulatory regions.

5.
Alzheimers Dement ; 19(9): 3835-3847, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36951251

RESUMEN

INTRODUCTION: Genetic associations with Alzheimer's disease (AD) age at onset (AAO) could reveal genetic variants with therapeutic applications. We present a large Colombian kindred with autosomal dominant AD (ADAD) as a unique opportunity to discover AAO genetic associations. METHODS: A genetic association study was conducted to examine ADAD AAO in 340 individuals with the PSEN1 E280A mutation via TOPMed array imputation. Replication was assessed in two ADAD cohorts, one sporadic early-onset AD study and four late-onset AD studies. RESULTS: 13 variants had p<1×10-7 or p<1×10-5 with replication including three independent loci with candidate associations with clusterin including near CLU. Other suggestive associations were identified in or near HS3ST1, HSPG2, ACE, LRP1B, TSPAN10, and TSPAN14. DISCUSSION: Variants with suggestive associations with AAO were associated with biological processes including clusterin, heparin sulfate, and amyloid processing. The detection of these effects in the presence of a strong mutation for ADAD reinforces their potentially impactful role.


Asunto(s)
Enfermedad de Alzheimer , Clusterina , Humanos , Clusterina/genética , Colombia , Enfermedad de Alzheimer/diagnóstico , Mutación/genética , Amiloide , Presenilina-1/genética , Edad de Inicio
6.
Genome Biol ; 22(1): 116, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888138

RESUMEN

BACKGROUND: DNA methylation dynamics in the brain are associated with normal development and neuropsychiatric disease and differ across functionally distinct brain regions. Previous studies of genome-wide methylation differences among human brain regions focus on limited numbers of individuals and one to two brain regions. RESULTS: Using GTEx samples, we generate a resource of DNA methylation in purified neuronal nuclei from 8 brain regions as well as lung and thyroid tissues from 12 to 23 donors. We identify differentially methylated regions between brain regions among neuronal nuclei in both CpG (181,146) and non-CpG (264,868) contexts, few of which were unique to a single pairwise comparison. This significantly expands the knowledge of differential methylation across the brain by 10-fold. In addition, we present the first differential methylation analysis among neuronal nuclei from basal ganglia tissues and identify unique CpG differentially methylated regions, many associated with ion transport. We also identify 81,130 regions of variably CpG methylated regions, i.e., variable methylation among individuals in the same brain region, which are enriched in regulatory regions and in CpG differentially methylated regions. Many variably methylated regions are unique to a specific brain region, with only 202 common across all brain regions, as well as lung and thyroid. Variably methylated regions identified in the amygdala, anterior cingulate cortex, and hippocampus are enriched for heritability of schizophrenia. CONCLUSIONS: These data suggest that epigenetic variation in these particular human brain regions could be associated with the risk for this neuropsychiatric disorder.


Asunto(s)
Encéfalo/metabolismo , Metilación de ADN , Variación Genética , Patrón de Herencia , Carácter Cuantitativo Heredable , Islas de CpG , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Hipocampo/metabolismo , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/etiología , Neuronas , Especificidad de Órganos/genética
7.
Science ; 364(6436)2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30975860

RESUMEN

To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress-related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight.


Asunto(s)
Adaptación Fisiológica , Astronautas , Vuelo Espacial , Inmunidad Adaptativa , Peso Corporal , Arterias Carótidas/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Daño del ADN , Metilación de ADN , Microbioma Gastrointestinal , Inestabilidad Genómica , Humanos , Masculino , Homeostasis del Telómero , Factores de Tiempo , Estados Unidos , United States National Aeronautics and Space Administration
8.
Nat Neurosci ; 22(2): 307-316, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643296

RESUMEN

Epigenetic modifications confer stable transcriptional patterns in the brain, and both normal and abnormal brain function involve specialized brain regions. We examined DNA methylation by whole-genome bisulfite sequencing in neuronal and non-neuronal populations from four brain regions (anterior cingulate gyrus, hippocampus, prefrontal cortex, and nucleus accumbens) as well as chromatin accessibility in the latter two. We find pronounced differences in both CpG and non-CpG methylation (CG-DMRs and CH-DMRs) only in neuronal cells across brain regions. Neuronal CH-DMRs were highly associated with differential gene expression, whereas CG-DMRs were consistent with chromatin accessibility and enriched for regulatory regions. These CG-DMRs comprise ~12 Mb of the genome that is highly enriched for genomic regions associated with heritability of neuropsychiatric traits including addictive behavior, schizophrenia, and neuroticism, thus suggesting a mechanistic link between pathology and differential neuron-specific epigenetic regulation in distinct brain regions.


Asunto(s)
Conducta Adictiva/metabolismo , Encéfalo/metabolismo , Cromatina/metabolismo , Metilación de ADN , Neuronas/metabolismo , Neuroticismo/fisiología , Esquizofrenia/metabolismo , Conducta Adictiva/genética , Islas de CpG , Epigénesis Genética , Genoma , Humanos , Esquizofrenia/genética
9.
NPJ Microgravity ; 2: 16025, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28725735

RESUMEN

Genomic and epigenomic studies require the precise transfer of microliter volumes among different types of tubes in order to purify DNA, RNA, or protein from biological samples and subsequently perform analyses of DNA methylation, RNA expression, and chromatin modifications on a genome-wide scale. Epigenomic and transcriptional analyses of human blood cells, for example, require separation of purified cell types to avoid confounding contributions of altered cellular proportions, and long-term preservation of these cells requires their isolation and transfer into appropriate freezing media. There are currently no protocols for these cellular isolation procedures on the International Space Station (ISS). Currently human blood samples are either frozen as mixed cell populations (within the CPT collection tubes) with poor yield of viable cells required for cell-type isolations, or returned under ambient conditions, which requires timing with Soyuz missions. Here we evaluate the feasibility of translating terrestrial cell purification techniques to the ISS. Our evaluations were performed in microgravity conditions during parabolic atmospheric flight. The pipetting of open liquids in microgravity was evaluated using analog-blood fluids and several types of pipette hardware. The best-performing pipettors were used to evaluate the pipetting steps required for peripheral blood mononuclear cell (PBMC) isolation following terrestrial density-gradient centrifugation. Evaluation of actual blood products was performed for both the overlay of diluted blood, and the transfer of isolated PBMCs. We also validated magnetic purification of cells. We found that positive-displacement pipettors avoided air bubbles, and the tips allowed the strong surface tension of water, glycerol, and blood to maintain a patent meniscus and withstand robust pipetting in microgravity. These procedures will greatly increase the breadth of research that can be performed on board the ISS, and allow improvised experimentation by astronauts on extraterrestrial missions.

10.
J Biol Chem ; 290(1): 556-67, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25411249

RESUMEN

Replication-coupled destruction of a cohort of cell cycle proteins ensures efficient and precise genome duplication. Three proteins destroyed during replication via the CRL4(CDT2) ubiquitin E3 ligase, CDT1, p21, and SET8 (PR-SET7), are also essential or important during mitosis, making their reaccumulation after S phase a critical cell cycle event. During early and mid-S phase and during DNA repair, proliferating cell nuclear antigen (PCNA) loading onto DNA (PCNA(DNA)) triggers the interaction between CRL4(CDT2) and its substrates, resulting in their degradation. We have discovered that, beginning in late S phase, PCNA(DNA) is no longer sufficient to trigger CRL4(CDT2)-mediated degradation. A CDK1-dependent mechanism that blocks CRL4(CDT2) activity by interfering with CDT2 recruitment to chromatin actively protects CRL4(CDT2) substrates. We postulate that deliberate override of replication-coupled destruction allows anticipatory accumulation in late S phase. We further show that (as for CDT1) de novo SET8 reaccumulation is important for normal mitotic progression. In this manner, CDK1-dependent CRL4(CDT2) inactivation contributes to efficient transition from S phase to mitosis.


Asunto(s)
Cromatina/metabolismo , Quinasas Ciclina-Dependientes/genética , Mitosis , Proteínas Nucleares/genética , Fase S , Ubiquitina-Proteína Ligasas/genética , Proteína Quinasa CDC2 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Regulación de la Expresión Génica , Células HCT116 , Células HEK293 , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteolisis , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
Nucleus ; 5(6): 613-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25493544

RESUMEN

The scaffolding protein Symplekin is part of multiple complexes involved in generating and modifying the 3' end of mRNAs, including cleavage-polyadenylation, histone pre-mRNA processing and cytoplasmic polyadenylation. To study these functions in vivo, we examined the localization of Symplekin during development and generated mutations of the Drosophila Symplekin gene. Mutations in Symplekin that reduce Symplekin protein levels alter the efficiency of both poly A(+) and histone mRNA 3' end formation resulting in lethality or sterility. Histone mRNA synthesis takes place at the histone locus body (HLB) and requires a complex composed of Symplekin and several polyadenylation factors that associates with the U7 snRNP. Symplekin is present in the HLB in the early embryo when Cyclin E/Cdk2 is active and histone genes are expressed and is absent from the HLB in cells that have exited the cell cycle. During oogenesis, Symplekin is preferentially localized to HLBs during S-phase in endoreduplicating follicle cells when histone mRNA is synthesized. After the completion of endoreplication, Symplekin accumulates in the cytoplasm, in addition to the nucleoplasm, and localizes to tricellular junctions of the follicle cell epithelium. This localization depends on the RNA binding protein ypsilon schachtel. CPSF-73 and a number of mRNAs are localized at this same site, suggesting that Symplekin participates in cytoplasmic polyadenylation at tricellular junctions.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Desarrollo Embrionario , Histonas/genética , Poliadenilación/genética , Factores de Escisión y Poliadenilación de ARNm/biosíntesis , Animales , Citoplasma/genética , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Mutación , Nucleoplasminas/genética , Ribonucleoproteína Nuclear Pequeña U7/genética , Fase S/genética , Factores de Escisión y Poliadenilación de ARNm/genética
12.
Genetics ; 192(2): 371-84, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22851644

RESUMEN

DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.


Asunto(s)
Metilación de ADN/genética , Replicación del ADN/genética , N-Metiltransferasa de Histona-Lisina , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Mutación , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación/genética
13.
Genes Cancer ; 3(11-12): 634-48, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23634252

RESUMEN

The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication ("origin licensing") to active DNA synthesis ("origin firing"). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...