Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Rev Vaccines ; 23(1): 463-466, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38578120

RESUMEN

SummaryWhat are variant-adapted COVID-19 vaccines?The COVID-19 vaccine developed by BioNTech and Pfizer is known as BNT162b2 (Comirnaty). BNT162b2 contains messenger RNA, or mRNA, from SARS-CoV-2. SARS-CoV-2 is the virus responsible for COVID-19. mRNA is a type of genetic material that contains the instructions that tell cells in the body how to make a protein. The mRNA in BNT162b2 tells the body to make one of the proteins from SARS-CoV-2 known as the spike protein.This teaches the body's defense system, known as the immune system, to recognize and respond to a SARS-CoV-2 infection.The BNT162b2 vaccine contains mRNA from the first SARS-CoV-2 virus, which was detected in December 2019. Since this original vaccine was developed, the SARS-CoV-2 virus has evolved, resulting in the appearance of new versions of the virus, known as variants. Certain variants that might be more concerning for public health are labeled as either 'variants of concern' or 'variants of interest' by the World Health Organization (WHO). Variants have differences in their proteins compared with the original virus that can affect how well the original vaccine works against them. Therefore, BioNTech and Pfizer developed updated versions of the BNT162b2 vaccine that contain mRNA from certain variants. These new vaccines are called variant-adapted COVID-19 mRNA vaccines.Another company, Moderna, has also developed their own variant-adapted versions of their COVID-19 mRNA vaccine, mRNA-1273 (SpikeVax).Variant-adapted vaccines can contain parts of the variant mRNA either in addition to, or instead of, that from the original virus. Vaccines that contain mRNA from two different viruses are known as bivalent, whereas vaccines that contain mRNA from a single virus are called monovalent.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2 , Lenguaje , ARN Mensajero/genética
2.
Hum Vaccin Immunother ; 20(1): 2315659, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38407186

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to urgent actions by innovators, vaccine developers, regulators, and other stakeholders to ensure public access to protective vaccines while maintaining regulatory agency standards. Although development timelines for vaccines against SARS-CoV-2 were much quicker than standard vaccine development timelines, regulatory requirements for efficacy and safety evaluations, including the volume and quality of data collected, were upheld. Rolling review processes supported by sponsors and regulatory authorities enabled rapid assessment of clinical data as well as emergency use authorization. Post-authorization and pharmacovigilance activities enabled the quantity and breadth of post-marketing safety information to quickly exceed that generated from clinical trials. This paper reviews safety and reactogenicity data for the BNT162 vaccine candidates, including BNT162b2 (Comirnaty, Pfizer/BioNTech COVID-19 vaccine) and bivalent variant-adapted BNT162b2 vaccines, from preclinical studies, clinical trials, post-marketing surveillance, and real-world studies, including an unprecedentedly large body of independent evidence.


Asunto(s)
Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Mercadotecnía , Farmacovigilancia , SARS-CoV-2 , Vacunas Combinadas
4.
Front Med (Lausanne) ; 10: 1275817, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020129

RESUMEN

The appropriate use of regulatory agilities has the potential to accelerate regulatory review, utilize resources more efficiently and deliver medicines and vaccines more rapidly, all without compromising quality, safety and efficacy. This was clearly demonstrated during the COVID-19 pandemic where regulators and industry rapidly adapted to ensure continued supply of existing critical medicines and review and approve new innovative medicines. In this retrospective study, we analyze the impact of regulatory agilities on the review and approval of Pfizer/BioNTech's BNT162b2 mRNA COVID-19 Vaccine globally using regulatory approval data from 73 country/regional approvals. We report on the critical role of reliance and provide evidence that demonstrates reliance approaches and certain regulatory agilities reduced review times for the COVID-19 vaccine. These findings support the case for more widespread implementation of regulatory agilities and demonstrate the important role of such approaches to improve public health outcomes.

5.
Expert Rev Vaccines ; 22(1): 650-661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37417000

RESUMEN

INTRODUCTION: The Omicron BA.1 variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and subsequent sub-lineages exhibit partial escape from neutralizing antibodies elicited by vaccines containing or encoding wild-type spike protein. In response to the emergence of Omicron sub-lineages, variant-adapted vaccines that contain or encode for Omicron spike protein components have been developed. AREAS COVERED: This review presents currently available clinical immunogenicity and safety data on Omicron variant-adapted versions of the BNT162b2 messenger RNA (mRNA) vaccine and summarizes the expected mechanism of action, and rationale for development, of these vaccines. In addition, challenges encountered during development and regulatory approval are discussed. EXPERT OPINION: Omicron-adapted BNT162b2 vaccines provide a wider breadth and potentially more durable protection against Omicron sub-lineages and antigenically aligned variants when compared with the original vaccine. As SARS-CoV-2 continues to evolve, further vaccine updates may be required. To facilitate this, a globally harmonized regulatory process for the transition to updated vaccines is needed. Next-generation vaccine approaches may provide broader protection against future variants.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
6.
Expert Rev Vaccines ; 21(5): 609-619, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35157542

RESUMEN

INTRODUCTION: The coronavirus 19 (COVID-19) pandemic triggered a simultaneous global demand for preventative vaccines, which quickly became a high priority among governments as well as academia and the pharmaceutical industry. Within less than a year after COVID-19 was declared a pandemic, vaccines had received emergency approvals and vaccination campaigns were initiated. AREAS COVERED: We discuss the several factors that led to the unprecedented, accelerated development and approval of COVID-19 vaccines, which includes optimization of processes by regulatory authorities, redesign of sequential development processes, learnings from previous pandemics, and prior development of novel vaccine platforms. EXPERT OPINION: Despite unanticipated and complex challenges presented by real-time vaccine development in the context of the evolving COVID-19 pandemic and subsequent ever-changing landscape of public health measures and recommendations, important milestones were reached within extraordinarily short periods and, following roll-out to billions worldwide, the approved vaccines have proven to be well tolerated and effective. Whilst this is an exceptional feat and an example of what can be achieved with collaboration and innovation, there are lessons that can still be learned, including the need for further harmonization between regulatory authorities, modes to react to the pandemic's ever-evolving challenges, and ensuring equitable vaccine access among low-income countries.


Asunto(s)
COVID-19 , Vacunas , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Pandemias/prevención & control , SARS-CoV-2
7.
Biologicals ; 71: 55-60, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33966960

RESUMEN

The International Alliance for Biological Standardization and the Coalition for Epidemic Preparedness Innovations organized a joint webinar on the use of platform technologies for vaccine development. To tackle new emerging infectious diseases, including SARS-CoV-2, rapid response platforms, using the same basic components as a backbone, yet adaptable for use against different pathogens by inserting new genetic or protein sequences, are essential. Furthermore, it is evident that development of platform technologies needs to continue, due to the emerging variants of SARS-CoV-2. The objective of the meeting was to discuss techniques for platform manufacturing that have been used for COVID-19 vaccine development, with input from regulatory authorities on their experiences with, and expectations of, the platforms. Industry and regulators have been very successful in cooperating, having completed the whole process from development to licensing at an unprecedented speed. However, we should learn from the experiences, to be able to be even faster when a next pandemic of disease X occurs.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Desarrollo de Medicamentos , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/uso terapéutico , Congresos como Asunto , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...