Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 621(7980): 711-715, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37758892

RESUMEN

The nearby radio galaxy M87 offers a unique opportunity to explore the connections between the central supermassive black hole and relativistic jets. Previous studies of the inner region of M87 revealed a wide opening angle for the jet originating near the black hole1-4. The Event Horizon Telescope resolved the central radio source and found an asymmetric ring structure consistent with expectations from general relativity5. With a baseline of 17 years of observations, there was a shift in the jet's transverse position, possibly arising from an 8- to 10-year quasi-periodicity3. However, the origin of this sideways shift remains unclear. Here we report an analysis of radio observations over 22 years that suggests a period of about 11 years for the variation in the position angle of the jet. We infer that we are seeing a spinning black hole that induces the Lense-Thirring precession of a misaligned accretion disk. Similar jet precession may commonly occur in other active galactic nuclei but has been challenging to detect owing to the small magnitude and long period of the variation.

2.
ACS Nano ; 5(10): 8248-57, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21939254

RESUMEN

We report quantitative measurements of ordering, molecular orientation, and nanoscale morphology in the active layer of bulk heterojunction (BHJ) organic photovoltaic cells based on a thieno[3,4-b]thiophene-alt-benzodithiophene copolymer (PTB7), which has been shown to yield very high power conversion efficiency when blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC(71)BM). A surprisingly low degree of order was found in the polymer-far lower in the bulk heterojunction than in pure PTB7. X-ray diffraction data yielded a nearly full orientation distribution for the polymer π-stacking direction within well-ordered regions, revealing a moderate preference for π-stacking in the vertical direction ("face-on"). By combining molecular orientation information from polarizing absorption spectroscopies with the orientation distribution of ordered material from diffraction, we propose a model describing the PTB7 molecular orientation distribution (ordered and disordered), with the fraction of ordered polymer as a model parameter. This model shows that only a small fraction (≈20%) of the polymer in the PTB7/PC(71)BM blend is ordered. Energy-filtered transmission electron microscopy shows that the morphology of PTB7/PC(71)BM is composed of nanoscale fullerene-rich aggregates separated by polymer-rich regions. The addition of diiodooctane (DIO) to the casting solvent, as a processing additive, results in smaller domains and a more finely interpenetrating BHJ morphology, relative to blend films cast without DIO.

3.
Biomacromolecules ; 11(11): 3067-72, 2010 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-20954734

RESUMEN

Nanoscale surface features that mimic extracellular matrix are critical environmental cues for cell contact guidance and are vital in advanced medical devices in order to manipulate cell behaviors. Among them, nanogratings (line-and-space gratings) are common platforms to study geometric effects on cell contact guidance, especially cell alignment, but generally are one pattern height per platform. In this study, we developed a strategy to fabricate controlled substrates with a wide range of pattern shapes and surface chemistries and to separate surface chemistry and topography effects. As a demonstration of this strategy, six nanograting platforms on three materials were fabricated and applied to examine and differentiate the effects of surface topography and surface chemistry on cell contact guidance of murine preosteoblasts. All of the six platforms contained the same gradient in pattern height (0 to ≈350 nm). They were prepared using nanoimprint lithography and annealing for thermoplastic materials (low molecular weight polystyrene (PS) and polymethylmethacrylate (PMMA)) and photoimprint for a thermoset material (a cross-linked dimethacrylate (DMA)). Each material contains two platforms that are only different in line-and-space pitch (420 or 800 nm). The DMA nanogratings had a reverse line-and-space profile to those of the PS and PMMA nanogratings. Using these platforms, a full range of cell alignment, from randomly orientated to completely parallel to the grating direction was achieved. Results from focal adhesion assays and scanning electronic microscopy indicated a change in cell-substrate contact from a noncomposite state (full contact) to a composite state (partial contact between cell and substrate) as pattern height increased. These gradient platforms allowed for the separation of surface chemistry and surface topography to provide insight into the mechanisms responsible for cell contact guidance on nanopatterned surfaces.


Asunto(s)
Nanoestructuras/química , Nanotecnología , Osteoblastos/citología , Animales , Materiales Biocompatibles/química , Adhesión Celular , Reactivos de Enlaces Cruzados/química , Metacrilatos/química , Ratones , Polimetil Metacrilato/química , Poliestirenos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...