Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(6): e2307743, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37988595

RESUMEN

All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.

2.
ACS Appl Mater Interfaces ; 12(35): 39261-39272, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805961

RESUMEN

For methylammonium lead iodide perovskite solar cells prepared by co-evaporation, power conversion efficiencies of over 20% have been already demonstrated, however, so far, only in n-i-p configuration. Currently, the overall major challenges are the complex evaporation characteristics of organic precursors that strongly depend on the underlying charge selective contacts and the insufficient reproducibility of the co-evaporation process. To ensure a reliable co-evaporation process, it is important to identify the impact of different parameters in order to develop a more detailed understanding. In this work, we study the influence of the substrate temperature, underlying hole-transport layer (polymer PTAA versus self-assembling monolayer molecule MeO-2PACz), and perovskite precursor ratio on the morphology, composition, and performance of co-evaporated p-i-n perovskite solar cells. We first analyze the evaporation of pure precursor materials and show that the adhesion of methylammonium iodide (MAI) is significantly reduced with increased substrate temperature, while it remains almost unaffected for lead iodide (PbI2). This substrate temperature-dependent evaporation behavior of MAI is also transferred to the co-evaporation process and can directly influence the perovskite composition. We demonstrate that the optimal substrate temperature window for perovskite deposition is close to room temperature. At high temperature, not enough MAI for precise stoichiometry is incorporated even with very high MAI rates. While, at temperatures below -25 °C, the conversion of MAI with PbI2 is inhibited, and an amorphous yet unreacted film is formed. We observe that perovskite composition and morphology vary widely between the organic hole-transport layers (HTLs) PTAA and MeO-2PACz. For all substrate temperatures, MeO-2PACz enables higher solar cell PCEs than PTAA. Through the combination of vapor-deposited perovskites and a self-assembled monolayer, we achieve a stabilized power conversion efficiency of 20.6%, which is the first reported PCE above 20% for evaporated perovskite solar cells in p-i-n architecture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...