Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679416

RESUMEN

In this paper, a different Fiber Loop Mirror (FLM) configuration with two circulators is presented. This configuration is demonstrated and characterized for sensing applications. This new design concept was used for strain and torsion discrimination. For strain measurement, the interference fringe displacement has a sensitivity of (0.576 ± 0.009) pm‧µÎµ-1. When the FFT (Fast Fourier Transformer) is calculated and the frequency shift and signal amplitude are monitored, the sensitivities are (-2.1 ± 0.3) × 10-4 nm-1 µÎµ-1 and (4.9 ± 0.3) × 10-7 µÎµ-1, respectively. For the characterization in torsion, an FFT peaks variation of (-2.177 ± 0.002) × 10-12 nm-1/° and an amplitude variation of (1.02 ± 0.06) × 10-3/° are achieved. This configuration allows the use of a wide range of fiber lengths and with different refractive indices for controlling the free spectral range (FSR) and achieving refractive index differences, i.e., birefringence, higher than 10-2, which is essential for the development of high sensitivity physical parameter sensors, such as operating on the Vernier effect. Furthermore, this FLM configuration allows the system to be balanced, which is not possible with traditional FLMs.


Asunto(s)
Suministros de Energía Eléctrica , Fibras Ópticas , Birrefringencia
2.
Sensors (Basel) ; 19(22)2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31698716

RESUMEN

This work demonstrates the potential of combining a microsphere with a tip for the functionality of the contact sensor. This sensor consists of a tip aligned with the fiber core and a microsphere, which appears during tip formation. This new structure was produced using the electric arc machine. The sensor operation consists of the variation of the tip curvature, which causes a variation of the optical paths and, consequently, a change in the output signal. The study of this micro-cantilever consisted of an exploration of the contact mode. In addition, the sensor was characterized by temperature, which shows very low sensitivity and vibration. This last characterization was performed with two configurations parallel and perpendicular to the oscillating surface. The perpendicular case showed higher sensitivity and has an operating band of 0 Hz to 20 kHz. In this configuration, for frequencies up to 2 Hz, the intensity varies linearly with the frequencies and with a sensitivity of 0.032 ± 0.001 (Hz-1). For the parallel case, the operating band was from 1.5 kHz to 7 kHz.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...