Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 115(2): 401-411, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35217874

RESUMEN

The European bee, Apis mellifera L. (Hymenoptera: Apidae), is a fundamental resource for the pollination of a great variety of botanical species used by humans for sustenance. Over the last few decades, bee colonies have become vulnerable to a new pest that has advanced beyond its native sub-Saharan territory: the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). This currently presents a pressing problem in the United States and Australia, but it has also been recorded in Portugal and Italy and it is likely to spread in the rest of Europe too. This study represents a systematic review, based on EFSA guidelines, of the various control treatments for small hive beetles in order to identify the most effective methods as well as, those with no effects on bee colonies. The results show that the bulk of these studies were performed in the United States and that a number of treatments are suitable for the control of A. tumida, though some have negative effects on bees while others have low effectiveness or are ineffective. The best results are those with the entomopathogenic nematodes of the genus Steinernema and Heterorhabditis, but also with formic acid or diatomaceous earth. Various products containing insecticides have been effective, for example, Perizin (Bayer), GardStar (Y-Tex), CheckMite+ strips (Bayer), but Apithor (Apithor ) cannot be used in Europe because it contains Fipronil, which has been banned since 2013. Some common products like bleach and detergent have also been effective.


Asunto(s)
Escarabajos , Insecticidas , Animales , Australia , Abejas , Europa (Continente) , Italia
2.
PLoS One ; 3(2): e1682, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-18301759

RESUMEN

BACKGROUND: High-throughput tools for pan-genomic study, especially the DNA microarray platform, have sparked a remarkable increase in data production and enabled a shift in the scale at which biological investigation is possible. The use of microarrays to examine evolutionary relationships and processes, however, is predominantly restricted to model or near-model organisms. METHODOLOGY/PRINCIPAL FINDINGS: This study explores the utility of Diversity Arrays Technology (DArT) in evolutionary studies of non-model organisms. DArT is a hybridization-based genotyping method that uses microarray technology to identify and type DNA polymorphism. Theoretically applicable to any organism (even one for which no prior genetic data are available), DArT has not yet been explored in exclusively wild sample sets, nor extensively examined in a phylogenetic framework. DArT recovered 1349 markers of largely low copy-number loci in two lineages of seed-free land plants: the diploid fern Asplenium viride and the haploid moss Garovaglia elegans. Direct sequencing of 148 of these DArT markers identified 30 putative loci including four routinely sequenced for evolutionary studies in plants. Phylogenetic analyses of DArT genotypes reveal phylogeographic and substrate specificity patterns in A. viride, a lack of phylogeographic pattern in Australian G. elegans, and additive variation in hybrid or mixed samples. CONCLUSIONS/SIGNIFICANCE: These results enable methodological recommendations including procedures for detecting and analysing DArT markers tailored specifically to evolutionary investigations and practical factors informing the decision to use DArT, and raise evolutionary hypotheses concerning substrate specificity and biogeographic patterns. Thus DArT is a demonstrably valuable addition to the set of existing molecular approaches used to infer biological phenomena such as adaptive radiations, population dynamics, hybridization, introgression, ecological differentiation and phylogeography.


Asunto(s)
Evolución Biológica , Genoma de Planta , Genómica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Marcadores Genéticos , Filogenia , Investigación
3.
Am J Bot ; 93(8): 1101-8, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21642175

RESUMEN

The red algae, a remarkably diverse group of organisms, are difficult to identify using morphology alone. Following the proposal to use the mitochondrial cytochrome c oxidase subunit I (cox1) for DNA barcoding animals, we assessed the use of this gene in the identification of red algae using 48 samples plus 31 sequences obtained from GenBank. The data set spanned six orders of red algae: the Bangiales, Ceramiales, Corallinales, Gigartinales, Gracilariales and Rhodymeniales. The results indicated that species could be discriminated. Intraspecific variation was between 0 and 4 bp over 539 bp analyzed except in Mastocarpus stellatus (0-14 bp) and Gracilaria gracilis (0-11 bp). Cryptic diversity was found in Bangia fuscopurpurea, Corallina officinalis, G. gracilis, M. stellatus, Porphyra leucosticta and P. umbilicalis. Interspecific variation across all taxa was between 28 and 148 bp, except for G. gracilis and M. stellatus. A comparison of cox1 with the plastid Rubisco spacer for Porphyra species revealed that it was a more sensitive marker in revealing incipient speciation and cryptic diversity. The cox1 gene has the potential to be used for DNA barcoding of red algae, although a good taxonomic foundation coupled with extensive sampling of taxa is essential for the development of an effective identification system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA