Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pancreas ; 40(3): 438-43, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21240032

RESUMEN

OBJECTIVE: Obesity is a factor in the outcome and severity of pancreatic conditions. We examined the effect of hypercaloric diets on the pancreata of Ossabaw swine, a large animal model of metabolic syndrome and obesity. METHODS: Swine were fed with 1 of 4 diets: high-fructose (n = 9), atherogenic (n = 10), modified atherogenic (n = 6), or eucaloric standard diet (n = 12) for 24 weeks. Serum chemistries were measured, and pancreata were examined for histological abnormalities including steatosis, inflammation or fibrosis, insulin content, and oxidative stress. RESULTS: The fructose, atherogenic, and modified atherogenic diet groups exhibited obesity, metabolic syndrome, islet enlargement, and significantly increased pancreatic steatosis (22.9% ± 7.5%, 19.7% ± 7.7%, and 38.7% ± 15.3% fat in total tissue area, respectively) compared with controls (9.3% ± 1.9%; P < 0.05). The modified atherogenic diet group showed significantly increased oxidative stress levels as evidenced by elevated serum malondialdehyde (3.0 ± 3.3 vs 1.5 ± 0.3 µmol/L in controls; P = 0.006) and pancreatic malondialdehyde (0.1 ± 0.12 vs 0.04 ± 0.01 nmol/mg protein in controls; P = 0.01). None of the swine exhibited pancreatitis or cellular injury. CONCLUSIONS: Ossabaw swine fed with a modified atherogenic diet developed significant pancreatic steatosis and increased oxidative stress, but no other histological abnormalities were observed.


Asunto(s)
Obesidad/patología , Páncreas/patología , Tejido Adiposo/patología , Animales , Dieta/efectos adversos , Dieta Aterogénica , Modelos Animales de Enfermedad , Ingestión de Energía , Hígado Graso/etiología , Fructosa/administración & dosificación , Fructosa/efectos adversos , Malondialdehído/sangre , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Enfermedad del Hígado Graso no Alcohólico , Obesidad/etiología , Obesidad/metabolismo , Estrés Oxidativo , Páncreas/metabolismo , Porcinos , Porcinos Enanos
2.
J Biol Chem ; 285(51): 39943-52, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20956533

RESUMEN

Islet ß cell dysfunction resulting from inflammation, ER stress, and oxidative stress is a key determinant in the progression from insulin resistance to type 2 diabetes mellitus. It was recently shown that the enzyme deoxyhypusine synthase (DHS) promotes early cytokine-induced inflammation in the ß cell. DHS catalyzes the conversion of lysine to hypusine, an amino acid that is unique to the translational elongation factor eIF5A. Here, we sought to determine whether DHS activity contributes to ß cell dysfunction in models of type 2 diabetes in mice and ß cell lines. A 2-week treatment of obese diabetic C57BLKS/J-db/db mice with the DHS inhibitor GC7 resulted in improved glucose tolerance, increased insulin release, and enhanced ß cell mass. Thapsigargin treatment of ß cells in vitro induces a picture of ER stress and apoptosis similar to that seen in db/db mice; in this setting, DHS inhibition led to a block in CHOP (CAAT/enhancer binding protein homologous protein) production despite >30-fold activation of Chop gene transcription. Blockage of CHOP translation resulted in reduction of downstream caspase-3 cleavage and near-complete protection of cells from apoptotic death. DHS inhibition appeared to prevent the cytoplasmic co-localization of eIF5A with the ER, possibly precluding the participation of eIF5A in translational elongation at ER-based ribosomes. We conclude that hypusination by DHS is required for the ongoing production of proteins, particularly CHOP, in response to ER stress in the ß cell.


Asunto(s)
Apoptosis , Diabetes Mellitus Tipo 2/enzimología , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Respuesta de Proteína Desplegada , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Supervivencia Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Inhibidores Enzimáticos/farmacología , Células Secretoras de Insulina/patología , Ratones , Ratones Mutantes , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Extensión de la Cadena Peptídica de Translación/genética , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Tapsigargina/farmacología , Factor de Transcripción CHOP/biosíntesis , Factor de Transcripción CHOP/genética , Factor 5A Eucariótico de Iniciación de Traducción
3.
J Clin Invest ; 120(6): 2156-70, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20501948

RESUMEN

In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to beta cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent beta cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions.


Asunto(s)
Islotes Pancreáticos/metabolismo , Lisina/análogos & derivados , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Animales , Lisina/química , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Factor 5A Eucariótico de Iniciación de Traducción
4.
Curr Opin Organ Transplant ; 15(1): 61-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19855280

RESUMEN

PURPOSE OF REVIEW: Inducible pluripotent stem (iPS) cells derived from somatic cells represent a novel renewable source of tissue precursors. The potential of iPS cells is considered to be at least equivalent to that of human embryonic stem cells, facilitating the treatment or cure of diseases such as diabetes mellitus, spinal cord injuries, cardiovascular disease, and neurodegenerative diseases, but with the potential added benefit of evading the adaptive immune response that otherwise limits allogeneic cell-based therapies. This review discusses recent advances in pluripotency induction and the use of iPS cells to produce differentiated cells, while highlighting roadblocks to the widespread use of this technology in the clinical arena. RECENT FINDINGS: Whereas ethical and safety issues surrounding the use of human embryonic stem cells for the treatment of disease continue to be debated, use of iPS cells may be viewed as a more widely acceptable compromise. Since the first descriptions of inducible pluripotency from somatic cells, multiple laboratories have collectively made tremendous strides both in developing alternative, more clinically acceptable, induction strategies and in demonstrating the proof-of-principle that iPS cells can be differentiated into a variety of cell types to reverse mouse models of human disease. SUMMARY: Although the prospect of using patient-specific iPS cells has much appeal from an ethical and immunologic perspective, the limitations of the technology from the standpoint of reprogramming efficiency and therapeutic safety necessitate much more in-depth research before the initiation of human clinical trials.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/trasplante , Regeneración , Trasplante de Células Madre , Ingeniería de Tejidos , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Regeneración/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mol Cell Biol ; 29(8): 2053-67, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19237535

RESUMEN

The nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma) is an important target in diabetes therapy, but its direct role, if any, in the restoration of islet function has remained controversial. To identify potential molecular mechanisms of PPAR-gamma in the islet, we treated diabetic or glucose-intolerant mice with the PPAR-gamma agonist pioglitazone or with a control. Treated mice exhibited significantly improved glycemic control, corresponding to increased serum insulin and enhanced glucose-stimulated insulin release and Ca(2+) responses from isolated islets in vitro. This improved islet function was at least partially attributed to significant upregulation of the islet genes Irs1, SERCA, Ins1/2, and Glut2 in treated animals. The restoration of the Ins1/2 and Glut2 genes corresponded to a two- to threefold increase in the euchromatin marker histone H3 dimethyl-Lys4 at their respective promoters and was coincident with increased nuclear occupancy of the islet methyltransferase Set7/9. Analysis of diabetic islets in vitro suggested that these effects resulting from the presence of the PPAR-gamma agonist may be secondary to improvements in endoplasmic reticulum stress. Consistent with this possibility, incubation of thapsigargin-treated INS-1 beta cells with the PPAR-gamma agonist resulted in the reduction of endoplasmic reticulum stress and restoration of Pdx1 protein levels and Set7/9 nuclear occupancy. We conclude that PPAR-gamma agonists exert a direct effect in diabetic islets to reduce endoplasmic reticulum stress and enhance Pdx1 levels, leading to favorable alterations of the islet gene chromatin architecture.


Asunto(s)
Retículo Endoplásmico/patología , Eucromatina/ultraestructura , Proteínas de Homeodominio/metabolismo , Islotes Pancreáticos/fisiología , Islotes Pancreáticos/fisiopatología , PPAR gamma/fisiología , Transactivadores/metabolismo , Animales , Glucemia , Transportador de Glucosa de Tipo 2/genética , Proteínas de Homeodominio/análisis , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Ratones , Ratones Endogámicos NOD , PPAR gamma/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Transactivadores/análisis , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...