Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 16(11): e1008666, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232376

RESUMEN

Cytomegaloviruses (CMVs) are highly adapted to their host species resulting in strict species specificity. Hence, in vivo examination of all aspects of CMV biology employs animal models using host-specific CMVs. Infection of rhesus macaques (RM) with rhesus CMV (RhCMV) has been established as a representative model for infection of humans with HCMV due to the close evolutionary relationships of both host and virus. However, the only available RhCMV clone that permits genetic modifications is based on the 68-1 strain which has been passaged in fibroblasts for decades resulting in multiple genomic changes due to tissue culture adaptations. As a result, 68-1 displays reduced viremia in RhCMV-naïve animals and limited shedding compared to non-clonal, low passage isolates. To overcome this limitation, we used sequence information from primary RhCMV isolates to construct a full-length (FL) RhCMV by repairing all mutations affecting open reading frames (ORFs) in the 68-1 bacterial artificial chromosome (BAC). Inoculation of adult, immunocompetent, RhCMV-naïve RM with the reconstituted virus resulted in significant viremia in the blood similar to primary isolates of RhCMV and furthermore led to high viral genome copy numbers in many tissues at day 14 post infection. In contrast, viral dissemination was greatly reduced upon deletion of genes also lacking in 68-1. Transcriptome analysis of infected tissues further revealed that chemokine-like genes deleted in 68-1 are among the most highly expressed viral transcripts both in vitro and in vivo consistent with an important immunomodulatory function of the respective proteins. We conclude that FL-RhCMV displays in vitro and in vivo characteristics of a wildtype virus while being amenable to genetic modifications through BAC recombineering techniques.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/genética , Genoma Viral/genética , Viremia , Animales , Línea Celular , Cromosomas Artificiales Bacterianos , Citomegalovirus/patogenicidad , ADN Recombinante , Modelos Animales de Enfermedad , Femenino , Fibroblastos/virología , Humanos , Macaca mulatta , Masculino , Mutación , Sistemas de Lectura Abierta/genética , Filogenia , Especificidad de la Especie
2.
Proc Natl Acad Sci U S A ; 108(21): 8761-6, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21555552

RESUMEN

Common polymorphisms in complement alternative pathway (AP) proteins C3 (C3(R102G)), factor B (fB(R32Q)), and factor H (fH(V62I)) are associated with age-related macular degeneration (AMD) and other pathologies. Our published work showed that fB(R32Q) influences C3 convertase formation, whereas fH(V62I) affects factor I cofactor activity. Here we show how C3(R102G) (C3S/F) influences AP activity. In hemolysis assays, C3(102G) activated AP more efficiently (EC(50) C3(102G): 157 nM; C3(102R): 191 nM; P < 0.0001). fB binding kinetics and convertase stability were identical, but native and recombinant fH bound more strongly to C3b(102R) (K(D) C3b(102R): 1.0 µM; C3b(102G): 1.4 µM; P < 0.0001). Accelerated decay was unaltered, but fH cofactor activity was reduced for C3b(102G), favoring AP amplification. Combining disease "risk" variants (C3(102G), fB(32R), and fH(62V)) in add-back assays yielded sixfold higher hemolytic activity compared with "protective" variants (C3(102R), fB(32Q), and fH(62I); P < 0.0001). These data introduce the concept of a functional complotype (combination of polymorphisms) defining complement activity in an individual, thereby influencing susceptibility to AP-driven disease.


Asunto(s)
Activación de Complemento/genética , Complemento C3/genética , Factor B del Complemento/genética , Factor H de Complemento/genética , Susceptibilidad a Enfermedades/inmunología , Polimorfismo Genético/inmunología , Convertasas de Complemento C3-C5/metabolismo , Fibrinógeno/metabolismo , Humanos , Degeneración Macular , Unión Proteica , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...