Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arthritis Res Ther ; 26(1): 78, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570801

RESUMEN

BACKGROUND: Transitioning from a genetic association signal to an effector gene and a targetable molecular mechanism requires the application of functional fine-mapping tools such as reporter assays and genome editing. In this report, we undertook such studies on the osteoarthritis (OA) risk that is marked by single nucleotide polymorphism (SNP) rs34195470 (A > G). The OA risk-conferring G allele of this SNP associates with increased DNA methylation (DNAm) at two CpG dinucleotides within WWP2. This gene encodes a ubiquitin ligase and is the host gene of microRNA-140 (miR-140). WWP2 and miR-140 are both regulators of TGFß signaling. METHODS: Nucleic acids were extracted from adult OA (arthroplasty) and foetal cartilage. Samples were genotyped and DNAm quantified by pyrosequencing at the two CpGs plus 14 flanking CpGs. CpGs were tested for transcriptional regulatory effects using a chondrocyte cell line and reporter gene assay. DNAm was altered using epigenetic editing, with the impact on gene expression determined using RT-qPCR. In silico analysis complemented laboratory experiments. RESULTS: rs34195470 genotype associates with differential methylation at 14 of the 16 CpGs in OA cartilage, forming a methylation quantitative trait locus (mQTL). The mQTL is less pronounced in foetal cartilage (5/16 CpGs). The reporter assay revealed that the CpGs reside within a transcriptional regulator. Epigenetic editing to increase their DNAm resulted in altered expression of the full-length and N-terminal transcript isoforms of WWP2. No changes in expression were observed for the C-terminal isoform of WWP2 or for miR-140. CONCLUSIONS: As far as we are aware, this is the first experimental demonstration of an OA association signal targeting specific transcript isoforms of a gene. The WWP2 isoforms encode proteins with varying substrate specificities for the components of the TGFß signaling pathway. Future analysis should focus on the substrates regulated by the two WWP2 isoforms that are the targets of this genetic risk.


Asunto(s)
MicroARNs , Osteoartritis , Adulto , Humanos , Secuencia de Bases , Ubiquitina/genética , Ubiquitina/metabolismo , Isoformas de Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Metilación de ADN/genética , MicroARNs/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
Curr Rheumatol Rep ; 26(6): 222-234, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38430365

RESUMEN

PURPOSE OF REVIEW: Osteoarthritis is a complex and highly polygenic disease. Over 100 reported osteoarthritis risk variants fall in non-coding regions of the genome, ostensibly conferring functional effects through the disruption of regulatory elements impacting target gene expression. In this review, we summarise the progress that has advanced our knowledge of gene enhancers both within the field of osteoarthritis and more broadly in complex diseases. RECENT FINDINGS: Advances in technologies such as ATAC-seq have facilitated our understanding of chromatin states in specific cell types, bolstering the interpretation of GWAS and the identification of effector genes. Their application to osteoarthritis research has revealed enhancers as the principal regulatory element driving disease-associated changes in gene expression. However, tissue-specific effects in gene regulatory mechanisms can contribute added complexity to biological interpretation. Understanding gene enhancers and their altered activity in specific cell and tissue types is the key to unlocking the genetic complexity of osteoarthritis. The use of single-cell technologies in osteoarthritis research is still in its infancy. However, such tools offer great promise in improving our functional interpretation of osteoarthritis GWAS and the identification of druggable targets. Large-scale collaborative efforts will be imperative to understand tissue and cell-type specific molecular mechanisms underlying enhancer function in disease.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Osteoartritis , Humanos , Osteoartritis/genética , Elementos de Facilitación Genéticos/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad
3.
Arthritis Rheumatol ; 73(10): 1866-1877, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33760378

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is an age-related disease characterized by articular cartilage degeneration. It is largely heritable, and genetic screening has identified single-nucleotide polymorphisms (SNPs) marking genomic risk loci. One such locus is marked by the G>A SNP rs75621460, downstream of TGFB1. This gene encodes transforming growth factor ß1, the correct expression of which is essential for cartilage maintenance. This study investigated the regulatory activity of rs75621460 to characterize its impact on TGFB1 expression in disease-relevant patient samples (n = 319) and in Tc28a2 immortalized chondrocytes. METHODS: Articular cartilage samples from human patients were genotyped, and DNA methylation levels were quantified using pyrosequencing. Gene reporter and electrophoretic mobility shift assays were used to determine differential nuclear protein binding to the region. The functional impact of DNA methylation on TGFB1 expression was tested using targeted epigenome editing. RESULTS: The analyses showed that SNP rs75621460 was located within a TGFB1 enhancer region, and the OA risk allele A altered transcription factor binding, with decreased enhancer activity. Protein complexes binding to A (but not G) induced DNA methylation at flanking CG dinucleotides. Strong correlations between patient DNA methylation levels and TGFB1 expression were observed, with directly opposing effects in the cartilage and the synovium at this locus. This demonstrated biologic pleiotropy in the impact of the SNP within different tissues of the articulating joint. CONCLUSION: The OA risk SNP rs75621460 impacts TGFB1 expression by modulating the function of a gene enhancer. We propose a mechanism by which the SNP impacts enhancer function, providing novel biologic insight into one mechanism of OA genetic risk, which may facilitate the development of future pharmacologic therapies.


Asunto(s)
Cartílago Articular/metabolismo , Metilación de ADN , Osteoartritis/genética , Polimorfismo de Nucleótido Simple , Factor de Crecimiento Transformador beta1/genética , Alelos , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Osteoartritis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...