Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114047, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607916

RESUMEN

Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ß cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ß cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ß cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ß cells to maintain appropriate insulin release.


Asunto(s)
Secreción de Insulina , Células Secretoras de Insulina , L-Lactato Deshidrogenasa , Ácido Láctico , Humanos , Células Secretoras de Insulina/metabolismo , Animales , L-Lactato Deshidrogenasa/metabolismo , Ratones , Ácido Láctico/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Isoenzimas/metabolismo , Ciclo del Ácido Cítrico , Ratones Endogámicos C57BL , Masculino
2.
Sci Signal ; 17(833): eadg5678, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652761

RESUMEN

Upon activation, T cells undergo metabolic reprogramming to meet the bioenergetic demands of clonal expansion and effector function. Because dysregulated T cell cytokine production and metabolic phenotypes coexist in chronic inflammatory disease, including rheumatoid arthritis (RA), we investigated whether inflammatory cytokines released by differentiating T cells amplified their metabolic changes. We found that tumor necrosis factor-α (TNF-α) released by human naïve CD4+ T cells upon activation stimulated the expression of a metabolic transcriptome and increased glycolysis, amino acid uptake, mitochondrial oxidation of glutamine, and mitochondrial biogenesis. The effects of TNF-α were mediated by activation of Akt-mTOR signaling by the kinase ITK and did not require the NF-κB pathway. TNF-α stimulated the differentiation of naïve cells into proinflammatory T helper 1 (TH1) and TH17 cells, but not that of regulatory T cells. CD4+ T cells from patients with RA showed increased TNF-α production and consequent Akt phosphorylation upon activation. These cells also exhibited increased mitochondrial mass, particularly within proinflammatory T cell subsets implicated in disease. Together, these findings suggest that T cell-derived TNF-α drives their metabolic reprogramming by promoting signaling through ITK, Akt, and mTOR, which is dysregulated in autoinflammatory disease.


Asunto(s)
Artritis Reumatoide , Linfocitos T CD4-Positivos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Factor de Necrosis Tumoral alfa , Humanos , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/inmunología , Artritis Reumatoide/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Factor de Necrosis Tumoral alfa/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Mitocondrias/metabolismo , Reprogramación Metabólica
3.
Sci Rep ; 14(1): 1729, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242919

RESUMEN

Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.


Asunto(s)
Mitocondrias , NAD , Humanos , NAD/metabolismo , Mitocondrias/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Quinonas/metabolismo , Fosforilación Oxidativa , Succinatos/metabolismo , Hipoxia/metabolismo , Oxidación-Reducción
4.
Free Radic Biol Med ; 208: 1-12, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506952

RESUMEN

Heritable renal cancer syndromes (RCS) are associated with numerous chromosomal alterations including inactivating mutations in von Hippel-Lindau (VHL) gene. Here we identify a novel aspect of the phenotype in VHL-deficient human renal cells. We call it reductive stress as it is characterised by increased NADH/NAD+ ratio that is associated with impaired cellular respiration, impaired CAC activity, upregulation of reductive carboxylation of glutamine and accumulation of lipid droplets in VHL-deficient cells. Reductive stress was mitigated by glucose depletion and supplementation with pyruvate or resazurin, a redox-reactive agent. This study demonstrates for the first time that reductive stress is a part of the phenotype associated with VHL-deficiency in renal cells and indicates that the reversal of reductive stress can augment respiratory activity and CAC activity, suggesting a strategy for altering the metabolic profile of VHL-deficient tumours.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Neoplasias Renales/metabolismo , Carcinoma de Células Renales/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Glutamina/metabolismo , Regulación hacia Arriba
5.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086404

RESUMEN

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Asunto(s)
NAD , Mononucleótido de Nicotinamida , Humanos , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo , Autofagia , Niacinamida/metabolismo
7.
Sci Rep ; 12(1): 19657, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385275

RESUMEN

The ZFP36 family of RNA-binding proteins acts post-transcriptionally to repress translation and promote RNA decay. Studies of genes and pathways regulated by the ZFP36 family in CD4+ T cells have focussed largely on cytokines, but their impact on metabolic reprogramming and differentiation is unclear. Using CD4+ T cells lacking Zfp36 and Zfp36l1, we combined the quantification of mRNA transcription, stability, abundance and translation with crosslinking immunoprecipitation and metabolic profiling to determine how they regulate T cell metabolism and differentiation. Our results suggest that ZFP36 and ZFP36L1 act directly to limit the expression of genes driving anabolic processes by two distinct routes: by targeting transcription factors and by targeting transcripts encoding rate-limiting enzymes. These enzymes span numerous metabolic pathways including glycolysis, one-carbon metabolism and glutaminolysis. Direct binding and repression of transcripts encoding glutamine transporter SLC38A2 correlated with increased cellular glutamine content in ZFP36/ZFP36L1-deficient T cells. Increased conversion of glutamine to α-ketoglutarate in these cells was consistent with direct binding of ZFP36/ZFP36L1 to Gls (encoding glutaminase) and Glud1 (encoding glutamate dehydrogenase). We propose that ZFP36 and ZFP36L1 as well as glutamine and α-ketoglutarate are limiting factors for the acquisition of the cytotoxic CD4+ T cell fate. Our data implicate ZFP36 and ZFP36L1 in limiting glutamine anaplerosis and differentiation of activated CD4+ T cells, likely mediated by direct binding to transcripts of critical genes that drive these processes.


Asunto(s)
Glutamina , Ácidos Cetoglutáricos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Linfocitos T/metabolismo , Linfocitos T CD4-Positivos/metabolismo
8.
Cell Rep ; 40(7): 111193, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977513

RESUMEN

Succinate dehydrogenase (SDH) loss-of-function mutations drive succinate accumulation in tumor microenvironments, for example in the neuroendocrine tumors pheochromocytoma (PC) and paraganglioma (PG). Control of innate immune cell activity by succinate is described, but effects on T cells have not been interrogated. Here we report that exposure of human CD4+ and CD8+ T cells to tumor-associated succinate concentrations suppresses degranulation and cytokine secretion, including of the key anti-tumor cytokine interferon-γ (IFN-γ). Mechanistically, this is associated with succinate uptake-partly via the monocarboxylate transporter 1 (MCT1)-inhibition of succinyl coenzyme A synthetase activity and impaired glucose flux through the tricarboxylic acid cycle. Consistently, pharmacological and genetic interventions restoring glucose oxidation rescue T cell function. Tumor RNA-sequencing data from patients with PC and PG reveal profound suppression of IFN-γ-induced genes in SDH-deficient tumors compared with those with other mutations, supporting a role for succinate in modulating the anti-tumor immune response in vivo.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/genética , Linfocitos T CD8-positivos , Citocinas , Glucosa , Humanos , Paraganglioma/genética , Feocromocitoma/genética , Succinatos , Ácido Succínico , Microambiente Tumoral
9.
Sci Rep ; 12(1): 5696, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383257

RESUMEN

Cerebral malaria is the most serious manifestation of severe falciparum malaria. Sequestration of infected red blood cells and microvascular dysfunction are key contributing processes. Whether these processes occur in early stage disease prior to clinical manifestations is unknown. To help localize and understand these processes during the early stages of infection, we performed 18-F fluorodeoxyglucose positron emission tomography/magnetic resonance imaging in volunteers with Plasmodium falciparum induced blood stage malaria (IBSM) infection, and compared results to individuals with P. vivax infection, in whom coma is rare. Seven healthy, malaria-naïve participants underwent imaging at baseline, and at early symptom onset a median 9 days following inoculation (n = 4 P. falciparum, n = 3 P. vivax). Participants with P. falciparum infection demonstrated marked lability in radiotracer uptake across all regions of the brain, exceeding expected normal variation (within subject coefficient of variation (wCV): 14.4%) compared to the relatively stable uptake in participants with P. vivax infection (wCV: 3.5%). No consistent imaging changes suggestive of microvascular dysfunction were observed in either group. Neuroimaging in early IBSM studies is safe and technically feasible, with preliminary results suggesting that differences in brain tropism between P. falciparum and P. vivax may occur very early in infection.


Asunto(s)
Malaria Cerebral , Malaria Falciparum , Malaria Vivax , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Malaria Cerebral/diagnóstico por imagen , Malaria Falciparum/diagnóstico por imagen , Malaria Falciparum/patología , Malaria Vivax/patología , Plasmodium falciparum , Plasmodium vivax , Tomografía de Emisión de Positrones , Estudios Prospectivos
10.
Immunology ; 166(3): 299-309, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35322416

RESUMEN

In CD4+ T helper cells, the active form of vitamin D3 , 1,25-dihydroxyvitamin D3 (1,25D) suppresses production of inflammatory cytokines, including interferon-gamma (IFN-γ), but the mechanisms for this are not yet fully defined. In innate immune cells, response to 1,25D has been linked to metabolic reprogramming. It is unclear whether 1,25D has similar effects on CD4+ T cells, although it is known that antigen stimulation of these cells promotes an anabolic metabolic phenotype, characterized by high rates of aerobic glycolysis to support clonal expansion and effector cytokine expression. Here, we performed in-depth analysis of metabolic capacity and pathway usage, employing extracellular flux and stable isotope-based tracing approaches, in CD4+ T cells treated with 1,25D. We report that 1,25D significantly decreases rates of aerobic glycolysis in activated CD4+ T cells, whilst exerting a lesser effect on mitochondrial glucose oxidation. This is associated with transcriptional repression of Myc, but not repression of mTOR activity under these conditions. Consistent with the modest effect of 1,25D on mitochondrial activity, it also did not impact CD4+ T-cell mitochondrial mass or membrane potential. Finally, we demonstrate that inhibition of aerobic glycolysis by 1,25D substantially contributes to its immune-regulatory capacity in CD4+ T cells, since the suppression of IFN-γ expression was significantly blunted in the absence of aerobic glycolysis. 1,25-Dihydroxyvitamin D3 (1,25D) suppresses the production of inflammatory cytokines such as interferon-gamma (IFN-γ) by CD4+ T cells, but the underpinning mechanisms are not yet fully defined. Here, we identify that 1,25D inhibits aerobic glycolysis in activated CD4+ T cells, associated with decreased c-Myc expression. This mechanism appears to substantially contribute to the suppression of IFN-γ by 1,25D, since this is significantly blunted in the absence of aerobic glycolysis.


Asunto(s)
Calcitriol , Interferón gamma , Calcitriol/metabolismo , Calcitriol/farmacología , Glucólisis , Interferón gamma/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Vitamina D
11.
Cell Rep ; 38(5): 110320, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108535

RESUMEN

The demands of cancer cell proliferation alongside an inadequate angiogenic response lead to insufficient oxygen availability in the tumor microenvironment. Within the mitochondria, oxygen is the major electron acceptor for NADH, with the result that the reducing potential produced through tricarboxylic acid (TCA) cycle activity and mitochondrial respiration are functionally linked. As the oxidizing activity of the TCA cycle is required for efficient synthesis of anabolic precursors, tumoral hypoxia could lead to a cessation of proliferation without another means of correcting the redox imbalance. We show that in hypoxic conditions, mitochondrial pyrroline 5-carboxylate reductase 1 (PYCR1) activity is increased, oxidizing NADH with the synthesis of proline as a by-product. We further show that PYCR1 activity is required for the successful maintenance of hypoxic regions by permitting continued TCA cycle activity, and that its loss leads to significantly increased hypoxia in vivo and in 3D culture, resulting in widespread cell death.


Asunto(s)
Proliferación Celular/fisiología , Neoplasias/metabolismo , Oxígeno/metabolismo , Pirrolina Carboxilato Reductasas/metabolismo , Ciclo del Ácido Cítrico/fisiología , Humanos , Mitocondrias/metabolismo , Prolina/metabolismo , Microambiente Tumoral , delta-1-Pirrolina-5-Carboxilato Reductasa
12.
Cancer Res ; 81(13): 3480-3494, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34127497

RESUMEN

Succinate dehydrogenase is a key enzyme in the tricarboxylic acid cycle and the electron transport chain. All four subunits of succinate dehydrogenase are tumor suppressor genes predisposing to paraganglioma, but only mutations in the SDHB subunit are associated with increased risk of metastasis. Here we generated an Sdhd knockout chromaffin cell line and compared it with Sdhb-deficient cells. Both cell types exhibited similar SDH loss of function, metabolic adaptation, and succinate accumulation. In contrast, Sdhb-/- cells showed hallmarks of mesenchymal transition associated with increased DNA hypermethylation and a stronger pseudo-hypoxic phenotype compared with Sdhd-/- cells. Loss of SDHB specifically led to increased oxidative stress associated with dysregulated iron and copper homeostasis in the absence of NRF2 activation. High-dose ascorbate exacerbated the increase in mitochondrial reactive oxygen species, leading to cell death in Sdhb-/- cells. These data establish a mechanism linking oxidative stress to iron homeostasis that specifically occurs in Sdhb-deficient cells and may promote metastasis. They also highlight high-dose ascorbate as a promising therapeutic strategy for SDHB-related cancers. SIGNIFICANCE: Loss of different succinate dehydrogenase subunits can lead to different cell and tumor phenotypes, linking stronger 2-OG-dependent dioxygenases inhibition, iron overload, and ROS accumulation following SDHB mutation.


Asunto(s)
Ácido Ascórbico/farmacología , Homeostasis , Hierro/metabolismo , Mutación , Estrés Oxidativo , Succinato Deshidrogenasa/fisiología , Animales , Antioxidantes/farmacología , Dioxigenasas/antagonistas & inhibidores , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Fenotipo , Especies Reactivas de Oxígeno
13.
PLoS Med ; 18(5): e1003567, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34038421

RESUMEN

BACKGROUND: Plasmodium vivax has been proposed to infect and replicate in the human spleen and bone marrow. Compared to Plasmodium falciparum, which is known to undergo microvascular tissue sequestration, little is known about the behavior of P. vivax outside of the circulating compartment. This may be due in part to difficulties in studying parasite location and activity in life. METHODS AND FINDINGS: To identify organ-specific changes during the early stages of P. vivax infection, we performed 18-F fluorodeoxyglucose (FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) at baseline and just prior to onset of clinical illness in P. vivax experimentally induced blood-stage malaria (IBSM) and compared findings to P. falciparum IBSM. Seven healthy, malaria-naive participants were enrolled from 3 IBSM trials: NCT02867059, ACTRN12616000174482, and ACTRN12619001085167. Imaging took place between 2016 and 2019 at the Herston Imaging Research Facility, Australia. Postinoculation imaging was performed after a median of 9 days in both species (n = 3 P. vivax; n = 4 P. falciparum). All participants were aged between 19 and 23 years, and 6/7 were male. Splenic volume (P. vivax: +28.8% [confidence interval (CI) +10.3% to +57.3%], P. falciparum: +22.9 [CI -15.3% to +61.1%]) and radiotracer uptake (P. vivax: +15.5% [CI -0.7% to +31.7%], P. falciparum: +5.5% [CI +1.4% to +9.6%]) increased following infection with each species, but more so in P. vivax infection (volume: p = 0.72, radiotracer uptake: p = 0.036). There was no change in FDG uptake in the bone marrow (P. vivax: +4.6% [CI -15.9% to +25.0%], P. falciparum: +3.2% [CI -3.2% to +9.6%]) or liver (P. vivax: +6.2% [CI -8.7% to +21.1%], P. falciparum: -1.4% [CI -4.6% to +1.8%]) following infection with either species. In participants with P. vivax, hemoglobin, hematocrit, and platelet count decreased from baseline at the time of postinoculation imaging. Decrements in hemoglobin and hematocrit were significantly greater in participants with P. vivax infection compared to P. falciparum. The main limitations of this study are the small sample size and the inability of this tracer to differentiate between host and parasite metabolic activity. CONCLUSIONS: PET/MRI indicated greater splenic tropism and metabolic activity in early P. vivax infection compared to P. falciparum, supporting the hypothesis of splenic accumulation of P. vivax very early in infection. The absence of uptake in the bone marrow and liver suggests that, at least in early infection, these tissues do not harbor a large parasite biomass or do not provoke a prominent metabolic response. PET/MRI is a safe and noninvasive method to evaluate infection-associated organ changes in morphology and glucose metabolism.


Asunto(s)
Médula Ósea/parasitología , Glucosa/metabolismo , Hígado/parasitología , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Bazo/parasitología , Médula Ósea/metabolismo , Médula Ósea/patología , Femenino , Humanos , Hígado/metabolismo , Hígado/patología , Imagen por Resonancia Magnética , Malaria Falciparum/patología , Malaria Falciparum/fisiopatología , Malaria Vivax/patología , Malaria Vivax/fisiopatología , Masculino , Plasmodium falciparum , Plasmodium vivax , Tomografía de Emisión de Positrones , Estudios Prospectivos , Queensland , Columna Vertebral/metabolismo , Columna Vertebral/parasitología , Columna Vertebral/patología , Bazo/metabolismo , Bazo/patología , Adulto Joven
14.
Sci Rep ; 11(1): 9092, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907288

RESUMEN

Neonatal encephalopathy due to hypoxia-ischemia is associated with adverse neurodevelopmental effects. The involvement of branched chain amino acids (BCAAs) in this is largely unexplored. Transport of BCAAs at the plasma membrane is facilitated by SLC7A5/SLC3A2, which increase with hypoxia. We hypothesized that hypoxia would alter BCAA transport and metabolism in the neonatal brain. We investigated this using an organotypic forebrain slice culture model with, the SLC7A5/SLC3A2 inhibitor, 2-Amino-2-norbornanecarboxylic acid (BCH) under normoxic or hypoxic conditions. We subsequently analysed the metabolome and candidate gene expression. Hypoxia was associated with increased expression of SLC7A5 and SLC3A2 and an increased tissue abundance of BCAAs. Incubation of slices with 13C-leucine confirmed that this was due to increased cellular uptake. BCH had little effect on metabolite abundance under normoxic or hypoxic conditions. This suggests hypoxia drives increased cellular uptake of BCAAs in the neonatal mouse forebrain, and membrane mediated transport through SLC7A5 and SLC3A2 is not essential for this process. This indicates mechanisms exist to generate the compounds required to maintain essential metabolism in the absence of external nutrient supply. Moreover, excess BCAAs have been associated with developmental delay, providing an unexplored mechanism of hypoxia mediated pathogenesis in the developing forebrain.


Asunto(s)
Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Hipoxia/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Prosencéfalo/fisiología , Adaptación Biológica , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Animales Recién Nacidos , Transporte Biológico , Ácidos Carboxílicos/farmacología , Hipoxia de la Célula , Femenino , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Regulación de la Expresión Génica , Hipoxia/genética , Transportador de Aminoácidos Neutros Grandes 1/genética , Masculino , Ratones Endogámicos C57BL , Norbornanos/farmacología , Técnicas de Cultivo de Órganos , Prosencéfalo/efectos de los fármacos
15.
Magn Reson Chem ; 59(3): 287-299, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32830359

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is integral to metabolic studies; yet, it can suffer from the long acquisition times required to collect data of sufficient signal strength and resolution. The use of non-uniform sampling (NUS) allows faster collection of NMR spectra without loss of spectral integrity. When planning experimental methodologies to perform metabolic flux analysis (MFA) of cell metabolism, a variety of options are available for the acquisition of NUS NMR data. Before beginning data collection, decisions have to be made regarding selection of pulse sequence, number of transients and NUS specific parameters such as the sampling level and sampling schedule. Poor choices will impact data quality, which may have a negative effect on the subsequent analysis and biological interpretation. Herein, we describe factors that should be considered when setting up non-uniformly sampled 2D-1 H,13 C HSQC NMR experiments for MFA and provide a standard protocol for users to follow.


Asunto(s)
Análisis de Flujos Metabólicos/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Relación Señal-Ruido
16.
Chembiochem ; 20(17): 2207-2211, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-30990951

RESUMEN

Tracer-based metabolism is becoming increasingly important for studying metabolic mechanisms in cells. NMR spectroscopy offers several approaches to measure label incorporation in metabolites, including 13 C- and 1 H-detected spectra. The latter are generally more sensitive, but quantification depends on the proton-carbon 1 JCH coupling constant, which varies significantly between different metabolites. It is therefore not possible to have one experiment optimised for all metabolites, and quantification of 1 H-edited spectra such as HSQCs requires precise knowledge of coupling constants. Increasing interest in tracer-based and metabolic flux analysis requires robust analyses with reasonably small acquisition times. Herein, we compare 13 C-filtered and 13 C-edited methods for quantification and show the applicability of the methods for real-time NMR spectroscopy of cancer-cell metabolism, in which label incorporations are subject to constant flux. We find an approach using a double filter to be most suitable and sufficiently robust to reliably obtain 13 C incorporations from difference spectra. This is demonstrated for JJN3 multiple myeloma cells processing glucose over 24 h. The proposed method is equally well suited for calculating the level of label incorporation in labelled cell extracts in the context of metabolic flux analysis.


Asunto(s)
Isótopos de Carbono , Células/metabolismo , Marcaje Isotópico , Espectroscopía de Resonancia Magnética/métodos , Mieloma Múltiple/metabolismo , Línea Celular Tumoral , Glucosa/metabolismo , Humanos , Análisis de Flujos Metabólicos/métodos , Mieloma Múltiple/patología
17.
Sci Rep ; 9(1): 2520, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792403

RESUMEN

Metabolism changes extensively during the normal proliferation and differentiation of mammalian cells, and in cancer and inflammatory diseases. Since changes in the metabolic network reflect interactions between genetic, epigenetic and environmental changes, it is helpful to study the flow of label from isotopically labelled precursors into other metabolites rather than static metabolite levels. For this Nuclear Magnetic Resonance (NMR) spectroscopy is an attractive technique as it can quantify site-specific label incorporation. However, for applications using human cells and cell lines, the challenge is to optimize the process to maximize sensitivity and reproducibility. Here we present a new framework to analyze metabolism in mammalian cell lines and primary cells, covering the workflow from the preparation of cells to the acquisition and analysis of NMR spectra. We have applied this new approach in hematological and liver cancer cell lines and confirm the feasibility of tracer-based metabolism in primary liver cells.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Redes y Vías Metabólicas/genética , Metabolismo/genética , Animales , Isótopos de Carbono/química , Isótopos de Carbono/farmacología , Humanos , Marcaje Isotópico/métodos , Flujo de Trabajo
18.
J Med Chem ; 61(18): 8226-8240, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30199249

RESUMEN

Monopolar spindle 1 (MPS1) occupies a central role in mitosis and is one of the main components of the spindle assembly checkpoint. The MPS1 kinase is an attractive cancer target, and herein, we report the discovery of the clinical candidate BOS172722. The starting point for our work was a series of pyrido[3,4- d]pyrimidine inhibitors that demonstrated excellent potency and kinase selectivity but suffered from rapid turnover in human liver microsomes (HLM). Optimizing HLM stability proved challenging since it was not possible to identify a consistent site of metabolism and lowering lipophilicity proved unsuccessful. Key to overcoming this problem was the finding that introduction of a methyl group at the 6-position of the pyrido[3,4- d]pyrimidine core significantly improved HLM stability. Met ID studies suggested that the methyl group suppressed metabolism at the distant aniline portion of the molecule, likely by blocking the preferred pharmacophore through which P450 recognized the compound. This work ultimately led to the discovery of BOS172722 as a Phase 1 clinical candidate.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Descubrimiento de Drogas , Microsomas Hepáticos/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirimidinas/química , Pirimidinas/farmacología , Triazoles/química , Triazoles/farmacología , Animales , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Ensayos Clínicos Fase I como Asunto , Femenino , Humanos , Masculino , Metilación , Ratones , Microsomas Hepáticos/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Pirimidinas/farmacocinética , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Distribución Tisular , Triazoles/farmacocinética
19.
J Med Chem ; 59(8): 3671-88, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27055065

RESUMEN

Monopolar spindle 1 (MPS1) plays a central role in the transition of cells from metaphase to anaphase and is one of the main components of the spindle assembly checkpoint. Chromosomally unstable cancer cells rely heavily on MPS1 to cope with the stress arising from abnormal numbers of chromosomes and centrosomes and are thus more sensitive to MPS1 inhibition than normal cells. We report the discovery and optimization of a series of new pyrido[3,4-d]pyrimidine based inhibitors via a structure-based hybridization approach from our previously reported inhibitor CCT251455 and a modestly potent screening hit. Compounds in this novel series display excellent potency and selectivity for MPS1, which translates into biomarker modulation in an in vivo human tumor xenograft model.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas de Ciclo Celular/química , Descubrimiento de Drogas , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...