Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(23): 16109-16119, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38019899

RESUMEN

Multidrug-resistant Gram-negative bacteria present an urgent and formidable threat to the global public health. Polymyxins have emerged as a last-resort therapy against these 'superbugs'; however, their efficacy against pulmonary infection is poor. In this study, we integrated chemical biology and molecular dynamics simulations to examine how the alveolar lung surfactant significantly reduces polymyxin antibacterial activity. We discovered that lung surfactant is a phospholipid-based permeability barrier against polymyxins, compromising their efficacy against target bacteria. Next, we unraveled the structure-interaction relationship between polymyxins and lung surfactant, elucidating the thermodynamics that govern the penetration of polymyxins through this critical surfactant layer. Moreover, we developed a novel analog, FADDI-235, which exhibited potent activity against Gram-negative bacteria, both in the presence and absence of lung surfactant. These findings shed new light on the sequestration mechanism of lung surfactant on polymyxins and importantly pave the way for the rational design of new-generation lipopeptide antibiotics to effectively treat Gram-negative bacterial pneumonia.


Asunto(s)
Antibacterianos , Polimixinas , Polimixinas/farmacología , Antibacterianos/química , Lipopéptidos , Bacterias , Tensoactivos , Pulmón
2.
Antibiotics (Basel) ; 12(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36830325

RESUMEN

Polymyxins are last-line antibiotics for the treatment of Gram-negative 'superbugs'. However, nephrotoxicity can occur in up to 60% of patients administered intravenous polymyxins. The mechanisms underpinning nephrotoxicity remain unclear. To understand polymyxin-induced nephrotoxicity, human renal proximal tubule cells were treated for 24 h with 0.1 mM polymyxin B or two new analogues, FADDI-251 or FADDI-287. Transcriptomic analysis was performed, and differentially expressed genes (DEGs) were identified using ANOVA (FDR < 0.2). Cell viability following treatment with polymyxin B, FADDI-251 or FADDI-287 was 66.0 ± 5.33%, 89.3 ± 3.96% and 90.4 ± 1.18%, respectively. Transcriptomics identified 430, 193 and 150 DEGs with polymyxin B, FADDI-251 and FADDI-287, respectively. Genes involved with metallothioneins and Toll-like receptor pathways were significantly perturbed by all polymyxins. Only polymyxin B induced perturbations in signal transduction, including FGFR2 and MAPK signaling. SIGNOR network analysis showed all treatments affected essential regulators in the immune system, autophagy, cell cycle, oxidative stress and apoptosis. All polymyxins caused significant perturbations of metal homeostasis and TLR signaling, while polymyxin B caused the most dramatic perturbations of the transcriptome. This study reveals the impact of polymyxin structure modifications on transcriptomic responses in human renal tubular cells and provides important information for designing safer new-generation polymyxins.

3.
J Med Chem ; 66(4): 2865-2876, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36745479

RESUMEN

Polymyxins (polymyxin B and colistin) are lipopeptide antibiotics used as a last-line treatment for life-threatening multidrug-resistant (MDR) Gram-negative bacterial infections. Unfortunately, their clinical use has been affected by dose-limiting toxicity and increasing resistance. Structure-activity (SAR) and structure-toxicity (STR) relationships are paramount for the development of safer polymyxins, albeit very little is known about the role of the conserved position 10 threonine (Thr) residue in the polymyxin core scaffold. Here, we synthesized 30 novel analogues of polymyxin B1 modified explicitly at position 10 and examined the antimicrobial activity against Gram-negative bacteria and in vivo toxicity and performed molecular dynamics simulations with bacterial outer membranes. For the first time, this study revealed the stereochemical requirements and role of the ß-hydroxy side chain in promoting the correctly folded conformation of the polymyxin that drives outer membrane penetration and antibacterial activity. These findings provide essential information for developing safer and more efficacious new-generation polymyxin antibiotics.


Asunto(s)
Infecciones por Bacterias Gramnegativas , Polimixinas , Humanos , Antibacterianos/química , Polimixina B/química , Polimixina B/uso terapéutico , Colistina/química , Colistina/uso terapéutico , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico
4.
Artículo en Inglés | MEDLINE | ID: mdl-33649114

RESUMEN

Intravenous administration of the last-line polymyxins results in poor drug exposure in the lungs and potential nephrotoxicity; while inhalation therapy offers better pharmacokinetics/pharmacodynamics for pulmonary infections by delivering the antibiotic to the infection site directly. However, polymyxin inhalation therapy has not been optimized and adverse effects can occur. This study aimed to quantitatively determine the intracellular accumulation and distribution of polymyxins in single human alveolar epithelial A549 cells. Cells were treated with an iodine-labeled polymyxin probe FADDI-096 (5.0 and 10.0 µM) for 1, 4, and 24 h. Concentrations of FADDI-096 in single A549 cells were determined by synchrotron-based X-ray fluorescence microscopy. Concentration- and time-dependent accumulation of FADDI-096 within A549 cells was observed. The intracellular concentrations (mean ± SEM, n ≥ 189) of FADDI-096 were 1.58 ± 0.11, 2.25 ± 0.10, and 2.46 ± 0.07 mM following 1, 4 and 24 h of treatment at 10 µM, respectively. The corresponding intracellular concentrations following the treatment at 5 µM were 0.05 ± 0.01, 0.24 ± 0.04, and 0.25 ± 0.02 mM (n ≥ 189). FADDI-096 was mainly localized throughout the cytoplasm and nuclear region over 24 h. The intracellular zinc concentration increased in a concentration- and time-dependent manner. This is the first study to quantitatively map the accumulation of polymyxins in human alveolar epithelial cells and provides crucial insights for deciphering the mechanisms of their pulmonary toxicity. Importantly, our results may shed light on the optimization of inhaled polymyxins in patients and the development of new-generation safer polymyxins.

5.
J Med Chem ; 65(14): 10001-10013, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35786900

RESUMEN

Multidrug-resistant Gram-negative bacteria seriously threaten modern medicine due to the lack of efficacious therapeutic options. Their outer membrane (OM) is an essential protective fortress to exclude many antibiotics. Unfortunately, current structural biology methods are not able to resolve the membrane structure and it is difficult to examine the specific interaction between the OM and small molecules. These limitations hinder mechanistic understanding of antibiotic penetration through the OM and antibiotic discovery. Here, we developed biologically relevant OM models by quantitatively determining membrane lipidomics of Pseudomonas aeruginosa and elucidated how lipopolysaccharide modifications and OM vesicles mediated resistance to polymyxins. Supported by chemical biology and pharmacological assays, our multiscale molecular dynamics simulations provide an intelligent platform to quantify the membrane-penetrating thermodynamics of peptides and predict their antimicrobial activity. Through experimental validations with our in-house polymyxin analogue library, our computational strategy may have significant potential in accelerating the discovery of lipopeptides against bacterial "superbugs".


Asunto(s)
Antibacterianos , Lipopéptidos , Pseudomonas aeruginosa , Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Lipopéptidos/farmacología , Simulación de Dinámica Molecular , Polimixinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos
6.
Front Chem ; 10: 843163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372270

RESUMEN

Peptide-Peptide Nucleic Acid (PNA) conjugates targeting essential bacterial genes have shown significant potential in developing novel antisense antimicrobials. The majority of efforts in this area are focused on identifying different PNA targets and the selection of peptides to deliver the peptide-PNA conjugates to Gram-negative bacteria. Notably, the selection of a linkage strategy to form peptide-PNA conjugate plays an important role in the effective delivery of PNAs. Recently, a unique Cysteine- 2-Cyanoisonicotinamide (Cys-CINA) click chemistry has been employed for the synthesis of cyclic peptides. Considering the high selectivity of this chemistry, we investigated the efficiency of Cys-CINA conjugation to synthesize novel antimicrobial peptide-PNA conjugates. The PNA targeting acyl carrier protein gene (acpP), when conjugated to the membrane-active antimicrobial peptides (polymyxin), showed improvement in antimicrobial activity against multidrug-resistant Gram-negative Acinetobacter baumannii. Thus, indicating that the Cys-CINA conjugation is an effective strategy to link the antisense oligonucleotides with antimicrobial peptides. Therefore, the Cys-CINA conjugation opens an exciting prospect for antimicrobial drug development.

7.
Nat Commun ; 13(1): 1625, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338128

RESUMEN

The emergence of multidrug-resistant (MDR) Gram-negative pathogens is an urgent global medical challenge. The old polymyxin lipopeptide antibiotics (polymyxin B and colistin) are often the only therapeutic option due to resistance to all other classes of antibiotics and the lean antibiotic drug development pipeline. However, polymyxin B and colistin suffer from major issues in safety (dose-limiting nephrotoxicity, acute toxicity), pharmacokinetics (poor exposure in the lungs) and efficacy (negligible activity against pulmonary infections) that have severely limited their clinical utility. Here we employ chemical biology to systematically optimize multiple non-conserved positions in the polymyxin scaffold, and successfully disconnect the therapeutic efficacy from the toxicity to develop a new synthetic lipopeptide, structurally and pharmacologically distinct from polymyxin B and colistin. This resulted in the clinical candidate F365 (QPX9003) with superior safety and efficacy against lung infections caused by top-priority MDR pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae.


Asunto(s)
Colistina , Polimixina B , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple , Lipopéptidos/farmacología , Lipopéptidos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Polimixinas/farmacología , Polimixinas/uso terapéutico , Pseudomonas aeruginosa
8.
Chem Sci ; 12(36): 12211-12220, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34667587

RESUMEN

Multidrug-resistant Gram-negative bacteria represent a major medical challenge worldwide. New antibiotics are desperately required with 'old' polymyxins often being the only available therapeutic option. Here, we systematically investigated the structure-activity relationship (SAR) of polymyxins using a quantitative lipidomics-informed outer membrane (OM) model of Acinetobacter baumannii and a series of chemically synthesized polymyxin analogs. By integrating chemical biology and all-atom molecular dynamics simulations, we deciphered how each residue of the polymyxin molecule modulated its conformational folding and specific interactions with the bacterial OM. Importantly, a novel designed polymyxin analog FADDI-287 with predicted stronger OM penetration showed improved in vitro antibacterial activity. Collectively, our study provides a novel chemical biology and computational strategy to expedite the discovery of new-generation polymyxins against life-threatening Gram-negative 'superbugs'.

9.
J Antimicrob Chemother ; 75(12): 3534-3543, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32911540

RESUMEN

BACKGROUND: MDR bacteria represent an urgent threat to human health globally. Polymyxins are a last-line therapy against life-threatening Gram-negative 'superbugs', including Acinetobacter baumannii. Polymyxins exert antimicrobial activity primarily via permeabilizing the bacterial outer membrane (OM); however, the mechanism of interaction between polymyxins and the OM remains unclear at the atomic level. METHODS: We constructed a lipid A-based OM model of A. baumannii using quantitative membrane lipidomics data and employed all-atom molecular dynamics simulations with umbrella sampling techniques to elucidate the structure-interaction relationship and thermodynamics governing the penetration of polymyxins [B1 and E1 (i.e. colistin A) representing the two clinically used polymyxins] into the OM. RESULTS: Polymyxin B1 and colistin A bound to the A. baumannii OM by the initial electrostatic interactions between the Dab residues of polymyxins and the phosphates of lipid A, competitively displacing the cations from the headgroup region of the OM. Both polymyxin B1 and colistin A formed a unique folded conformation upon approaching the hydrophobic centre of the OM, consistent with previous experimental observations. Polymyxin penetration induced reorientation of the headgroups of the OM lipids near the penetration site and caused local membrane disorganization, thereby significantly increasing membrane permeability and promoting the subsequent penetration of polymyxin molecules into the OM and periplasmic space. CONCLUSIONS: The thermodynamics governing the penetration of polymyxins through the outer leaflet of the A. baumannii OM were examined and novel structure-interaction relationship information was obtained at the atomic and membrane level. Our findings will facilitate the discovery of novel polymyxins against MDR Gram-negative pathogens.


Asunto(s)
Acinetobacter baumannii , Antibacterianos/uso terapéutico , Humanos , Lípido A , Lipidómica , Simulación de Dinámica Molecular , Polimixinas
10.
J Biol Chem ; 295(47): 15902-15912, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32913118

RESUMEN

The octapeptins are lipopeptide antibiotics that are structurally similar to polymyxins yet retain activity against polymyxin-resistant Gram-negative pathogens, suggesting they might be used to treat recalcitrant infections. However, the basis of their unique activity is unclear because of the difficulty in generating high-resolution experimental data of the interaction of antimicrobial peptides with lipid membranes. To elucidate these structure-activity relationships, we employed all-atom molecular dynamics simulations with umbrella sampling to investigate the conformational and energetic landscape of octapeptins interacting with bacterial outer membrane (OM). Specifically, we examined the interaction of octapeptin C4 and FADDI-115, lacking a single hydroxyl group compared with octapeptin C4, with the lipid A-phosphoethanolamine modified OM of Acinetobacter baumannii Octapeptin C4 and FADDI-115 both penetrated into the OM hydrophobic center but experienced different conformational transitions from an unfolded to a folded state that was highly dependent on the structural flexibility of their respective N-terminal fatty acyl groups. The additional hydroxyl group present in the fatty acyl group of octapeptin C4 resulted in the molecule becoming trapped in a semifolded state, leading to a higher free energy barrier for OM penetration. The free energy barrier for the translocation through the OM hydrophobic layer was ∼72 kcal/mol for octapeptin C4 and 62 kcal/mol for FADDI-115. Our results help to explain the lower antimicrobial activity previously observed for octapeptin C4 compared with FADDI-115 and more broadly improve our understanding of the structure-function relationships of octapeptins. These findings may facilitate the discovery of next-generation octapeptins against polymyxin-resistant Gram-negative 'superbugs.'


Asunto(s)
Acinetobacter baumannii/química , Membrana Celular/química , Lipopéptidos/química , Simulación de Dinámica Molecular , Relación Estructura-Actividad
11.
ACS Infect Dis ; 6(8): 2110-2119, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32619094

RESUMEN

Multidrug-resistant Gram-negative bacteria are a serious global threat to human health. Polymyxins are increasingly used in patients as a last-line therapy to treat infections caused by these life-threatening 'superbugs'. Unfortunately, polymyxin-induced nephrotoxicity is the major dose-limiting factor and understanding its mechanism is crucial for the development of novel, safer polymyxins. Here, we undertook the first all-atom molecular dynamics simulations of the interaction between four naturally occurring polymyxins A1, B1, M1 and colistin A (representative structural variations of the polymyxin core structure) and the membrane of human kidney proximal tubular cells. All polymyxins inserted spontaneously into the hydrophobic region of the membrane where they were retained, although their insertion abilities varied. Polymyxin A1 completely penetrated into the hydrophobic region of the membrane with a unique folded conformation, whereas the other three polymyxins only inserted their fatty acyl tails into this region. Furthermore, local membrane defects and increased water penetration were induced by each polymyxin, which may represent the initial stage of cellular membrane damage. Finally, the structure-interaction relationship of polymyxins was investigated based on atomic interactions at the cell membrane level. The hydrophobicity at positions 6/7 and stereochemistry at position 3 regulated the interactions of polymyxins with the cell membrane. Collectively, our results provide new mechanistic insights into polymyxin-induced nephrotoxicity at the atomic level and will facilitate the development of new-generation polymyxins.


Asunto(s)
Antibacterianos , Polimixinas , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Células Epiteliales , Humanos , Riñón
12.
Adv Exp Med Biol ; 1145: 15-36, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31364069

RESUMEN

Polymyxins are naturally occurring cyclic lipopeptides that were discovered more than 60 years ago. They have a narrow antibacterial spectrum, which is mainly against Gram-negative pathogens. The dry antibiotic pipeline, together with the increasing incidence of bacterial resistance in the clinic, has been dubbed 'the perfect storm'. This has forced a re-evaluation of 'old' antibiotics, in particular the polymyxins, which retain activity against many multidrug-resistant (MDR) Gram-negative organisms. As a consequence, polymyxin B and colistin (polymyxin E) are now used as the last therapeutic option for infections caused by 'superbugs' such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. This chapter covers the history, chemistry and antibacterial spectrum of these very important last-line lipopeptide antibiotics.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Polimixinas/farmacología , Colistina/farmacología , Humanos , Polimixina B/farmacología
13.
Adv Exp Med Biol ; 1145: 343-362, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31364086

RESUMEN

The antimicrobial lipopeptides polymyxin B and colistin (polymyxin E) are used as a 'last-line' therapy for infections caused by multidrug-resistant (MDR) Gram-negative pathogens. However, their effective use as antibiotic drugs in the clinical setting is still plagued by significant toxicity issues, in particular their potential for nephrotoxicity. Furthermore, resistance to the polymyxins has begun to emerge in the clinic, which implies a total lack of antibiotics for the treatment of life-threatening infections caused by the Gram-negative 'superbugs'. This chapter details our current understanding of polymyxin structure-activity relationships as well as recent pre-clinical and clinical drug development efforts aimed at generating new polymyxin antibiotics with improved safety and efficacy.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Polimixinas/química , Polimixinas/farmacología , Antibacterianos/química , Relación Estructura-Actividad
14.
ACS Infect Dis ; 4(5): 646-655, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29566483

RESUMEN

The mucoid biofilm mode of growth of Pseudomonas aeruginosa ( P. aeruginosa) in the lungs of cystic fibrosis patients makes eradication of infections with antibiotic therapy very difficult. The lipopeptide antibiotics polymyxin B and colistin are currently the last-resort therapies for infections caused by multidrug-resistant P. aeruginosa. In the present study, we investigated the antibacterial activity of a series of polymyxin lipopeptides (polymyxin B, colistin, FADDI-003, octapeptin A3, and polymyxin A2) against a panel of polymyxin-susceptible and polymyxin-resistant P. aeruginosa cystic fibrosis isolates grown under planktonic or biofilm conditions in artificial sputum and their interactions with sputum component biomolecules. In sputum media under planktonic conditions, the lipopeptides FADDI-003 and octapeptin A3 displayed very promising activity against the polymyxin-resistant isolate FADDI-PA066 (polymyxin B minimum inhibitory concentration (MIC) = 32 mg/L), while retaining their activity against the polymyxin-sensitive strains FADDI-PA021 (polymyxin B MIC = 1 mg/L) and FADDI-PA020 (polymyxin B MIC = 2 mg/L). Polymyxin A2 was only effective against the polymyxin-sensitive isolates. However, under biofilm growth conditions, the hydrophobic lipopeptide FADDI-003 was inactive compared to the more hydrophilic lipopeptides, octapeptin A3, polymyxin A2, polymyxin B, and colistin. Transmission electron micrographs revealed octapeptin A3 caused reduction in the cell numbers in biofilm as well as biofilm disruption/"antibiofilm" activity. We therefore assessed the interactions of the lipopeptides with the component sputum biomolecules, mucin, deoxyribonucleic acid (DNA), surfactant, F-actin, lipopolysaccharide, and phospholipids. We observed the general trend that sputum biomolecules reduce lipopeptide antibacterial activity. Collectively, our data suggests that, in the airways, lipopeptide binding to component sputum biomolecules may reduce antibacterial efficacy and is dependent on the physicochemical properties of the lipopeptide.


Asunto(s)
Antibacterianos/farmacología , Lipopéptidos/farmacología , Polimixina B/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Esputo/química , Actinas/metabolismo , Biopelículas/efectos de los fármacos , Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana , Mucinas/metabolismo , Unión Proteica , Pseudomonas aeruginosa/aislamiento & purificación , Tensoactivos/metabolismo
15.
Cell Chem Biol ; 25(4): 380-391.e5, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29396290

RESUMEN

Resistance to the last-resort antibiotic colistin is now widespread and new therapeutics are urgently required. We report the first in toto chemical synthesis and pre-clinical evaluation of octapeptins, a class of lipopeptides structurally related to colistin. The octapeptin biosynthetic cluster consisted of three non-ribosomal peptide synthetases (OctA, OctB, and OctC) that produced an amphiphilic antibiotic, octapeptin C4, which was shown to bind to and depolarize membranes. While active against multi-drug resistant (MDR) strains in vitro, octapeptin C4 displayed poor in vivo efficacy, most likely due to high plasma protein binding. Nuclear magnetic resonance solution structures, empirical structure-activity and structure-toxicity models were used to design synthetic octapeptins active against MDR and extensively drug-resistant (XDR) bacteria. The scaffold was then subtly altered to reduce plasma protein binding, while maintaining activity against MDR and XDR bacteria. In vivo efficacy was demonstrated in a murine bacteremia model with a colistin-resistant P. aeruginosa clinical isolate.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Lipopéptidos/química , Lipopéptidos/farmacología , Animales , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Femenino , Humanos , Lipopéptidos/efectos adversos , Lipopéptidos/uso terapéutico , Ratones , Modelos Moleculares , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos
16.
ACS Chem Biol ; 13(1): 121-130, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29182311

RESUMEN

Polymyxins are last-line antibiotics against life-threatening multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance is increasingly reported, leaving a total lack of therapies. Using lipidomics and transcriptomics, we discovered that polymyxin B induced lipid A deacylation via pagL in both polymyxin-resistant and -susceptible Pseudomonas aeruginosa. Our results demonstrated that the deacylation of lipid A is an "innate immunity" response to polymyxins and a key compensatory mechanism to the aminoarabinose modification to confer high-level polymyxin resistance in P. aeruginosa. Furthermore, cutting-edge neutron reflectometry studies revealed that an assembled outer membrane (OM) with the less hydrophobic penta-acylated lipid A decreased polymyxin B penetration, compared to the hexa-acylated form. Polymyxin analogues with enhanced hydrophobicity displayed superior penetration into the tail regions of the penta-acylated lipid A OM. Our findings reveal a previously undiscovered mechanism of polymyxin resistance, wherein polymyxin-induced lipid A remodeling affects the OM packing and hydrophobicity, perturbs polymyxin penetration, and thereby confers high-level resistance.


Asunto(s)
Antibacterianos/farmacología , Lípido A/metabolismo , Polimixinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Acilación , Amino Azúcares/química , Amino Azúcares/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Lípido A/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-29061752

RESUMEN

Polymyxins are a last line of defense against multidrug-resistant Gram-negative pathogens. Recent pharmacological data show that intravenous polymyxins can cause nephrotoxicity in up to 60% of patients, and the plasma concentrations of polymyxins achieved with the currently recommended dosage regimens are suboptimal in a large proportion of patients. Simply increasing the daily dose of polymyxins is not possible due to nephrotoxicity. This study aimed to examine the protective effect of methionine against polymyxin-induced nephrotoxicity. Methionine (400 mg/kg of body weight), polymyxin B (35 mg/kg), a combination of methionine (100 or 400 mg/kg) and polymyxin B, and saline were administered to mice twice daily over 3.5 days. Kidneys were collected immediately at the end of the experiment for histological examination. The effect of methionine on the pharmacokinetics of polymyxin B was investigated in rats. The attenuation of polymyxin B (0.75 mM)-induced mitochondrial superoxide production by methionine (10.0 mM) was examined in rat kidney (NRK-52E) cells. Histological results revealed that the polymyxin-induced nephrotoxicity in mice was ameliorated by methionine in a dose-dependent manner. The methionine doses were well tolerated in the mice and rats, and the pharmacokinetics of polymyxin B in rats were not affected by methionine. In the group receiving polymyxin B-methionine, the total body clearance of polymyxin B was very similar to that in the group receiving polymyxin B alone (3.71 ± 0.57 versus 3.12 ± 1.66 ml/min/kg, P > 0.05). A substantial attenuation of polymyxin-induced mitochondrial superoxide production in NRK-52E cells was observed following pretreatment with methionine. Our results demonstrate that coadministration of methionine significantly ameliorated polymyxin-induced nephrotoxicity and decreased mitochondrial superoxide production in renal tubular cells.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Antibacterianos/efectos adversos , Metionina/farmacología , Estrés Oxidativo/efectos de los fármacos , Polimixina B/efectos adversos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Animales , Antibacterianos/farmacocinética , Células Cultivadas , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Polimixina B/farmacocinética , Sustancias Protectoras/farmacología , Ratas Sprague-Dawley , Superóxidos/metabolismo
18.
Sensors (Basel) ; 17(11)2017 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-29137129

RESUMEN

Polymyxins (polymyxin B and colistin) are cyclic lipopeptide antibiotics that serve as a last-line defence against Gram-negative "superbugs". In the present study, two novel fluorescent polymyxin probes were designed through regio-selective modifications of the polymyxin B core structure at the N-terminus and the hydrophobic motif at positions 6 and 7. The resulting probes, FADDI-285 and FADDI-286 demonstrated comparable antibacterial activity (MICs 2-8 mg/L) to polymyxin B and colistin (MICs 0.5-8 mg/L) against a panel of gram-negative clinical isolates of Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. These probes should prove to be of considerable utility for imaging cellular uptake and mechanistic investigations of these important last-line antibiotics.

19.
Org Biomol Chem ; 15(34): 7173-7180, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28812779

RESUMEN

The first total synthesis of a polypeptin, PE2, as well as its solution structure is reported. Synthesis in optically pure form confirms the proposed stereochemistry of the polypeptins at the 3-position on the 3-hydroxy depsipeptide moiety. We have also determined the NMR structure of PE2 in aqueous solution, showing it to form a stable ring conformation. The synthetic peptide shows anti-bacterial activity consistent with reports for naturally derived counterparts.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Polimixinas/síntesis química , Polimixinas/farmacología , Antibacterianos/química , Bacterias/efectos de los fármacos , Técnicas de Química Sintética , Modelos Moleculares , Polimixinas/química , Conformación Proteica , Soluciones
20.
ACS Infect Dis ; 3(8): 606-619, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28695731

RESUMEN

Octapeptins are cyclic lipopeptides with a broader spectrum of activity against fungi and polymyxin-resistant Gram-negative and Gram-positive bacteria. In the present study, we investigated the interaction of octapeptin A3 with asymmetric outer membrane models of Gram-negative pathogen Pseudomonas aeruginosa using neutron reflectometry, together with fluorimetric and calorimetry methods. For the first time, our neutron reflectometry results reveal that the interaction of octapeptin A3 with the Gram-negative outer membrane involves an initial transient polar interaction with the phospholipid and lipid A headgroups, followed by the penetration of the entire octapeptin molecule into the fatty acyl core of the outer membrane. This mechanism contrasts with that of polymyxin B, which specifically targets lipid A, whereas octapeptins appear to target both lipid A and phospholipids. Furthermore, the mechanism of octapeptins does not appear to be highly dependent on an initial complementary electrostatic interaction with lipid A, which accounts for their ability to bind to lipid A of polymyxin-resistant Gram-negative bacteria that is modified with cationic moieties that act to electrostatically repel the cationic polymyxin molecule. The presented findings shed new light on the mechanism whereby octapeptins penetrate the outer membrane of polymyxin-resistant Gram-negative pathogens and highlight their potential as candidates for development as new antibiotics against problematic multi-drug-resistant pathogens.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Membrana Celular/efectos de los fármacos , Lípido A/química , Lipopéptidos/farmacología , Pseudomonas aeruginosa/química , 1,2-Dipalmitoilfosfatidilcolina/química , Conformación de Carbohidratos , Membrana Celular/química , Farmacorresistencia Bacteriana Múltiple , Membrana Dobles de Lípidos/química , Lipopéptidos/química , Polimixina B/química , Polimixina B/farmacología , Unión Proteica , Liposomas Unilamelares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...