Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zootaxa ; 5327(1): 1-147, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-38220888

RESUMEN

At a time when nature conservation has become essential to ensure the long-term sustainability of our environment, it is widely acknowledged that conservation actions must be implemented within a solid taxonomic framework. In preparation for the upcoming update of the IUCN Red List, we here update the European checklist of the wild bees (sensu the IUCN geographical framework). The original checklist, published in 2014, was revised for the first time in 2017. In the present revision, we add one genus, four subgenera and 67 species recently described, 40 species newly recorded since the latest revision (including two species that are not native to Europe), 26 species overlooked in the previous European checklists and 63 published synonymies. We provide original records for eight species previously unknown to the continent and, as original taxonomic acts, we provide three new synonyms, we consider two names as nomina nuda, ten names as nomina dubia, three as species inquirenda, synonymize three species and exclude 40 species from the previous checklist. Around a hundred other taxonomic changes and clarifications are also included and discussed. The present work revises the total number of genera for IUCN Europe to 77 and the total number of species to 2,138. In addition to specifying the taxonomic changes necessary to update the forthcoming Red List of European bees, we discuss the sampling and taxonomic biases that characterise research on the European bee fauna and highlight the growing importance of range expansions and species invasions.


Asunto(s)
Ctenóforos , Himenópteros , Abejas , Animales , Europa (Continente)
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210172, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35491602

RESUMEN

Research into pollinators in managed landscapes has recently combined approaches of pollination ecology and landscape ecology, because key stressors are likely to interact across wide areas. While laboratory and field experiments are valuable for furthering understanding, studies are required to investigate the interacting drivers of pollinator health and diversity across a broader range of landscapes and a wider array of taxa. Here, we use a network of 96 study landscapes in six topographically diverse regions of Britain, to test the combined importance of honeybee density, insecticide loadings, floral resource availability and habitat diversity to pollinator communities. We also explore the interactions between these drivers and the cover and proximity of semi-natural habitat. We found that among our four drivers, only honeybee density was positively related to wild pollinator abundance and diversity, and the positive association between abundance and floral resources depended on insecticide loadings and habitat diversity. By contrast, our exploratory models including habitat composition metrics revealed a complex suite of interactive effects. These results demonstrate that improving pollinator community composition and health is unlikely to be achieved with general resource enhancements only. Rather, local land-use context should be considered in fine-tuning pollinator management and conservation. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Asunto(s)
Agricultura , Insecticidas , Animales , Abejas , Ecología , Ecosistema , Polinización
3.
PLoS One ; 16(4): e0250056, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33909661

RESUMEN

A recurrent concern in nature conservation is the potential competition for forage plants between wild bees and managed honey bees. Specifically, that the highly sophisticated system of recruitment and large perennial colonies of honey bees quickly exhaust forage resources leading to the local extirpation of wild bees. However, different species of bees show different preferences for forage plants. We here summarize known forage plants for honey bees and wild bee species at national scale in Denmark. Our focus is on floral resources shared by honey bees and wild bees, with an emphasis on both threatened wild bee species and foraging specialist species. Across all 292 known bee species from Denmark, a total of 410 plant genera were recorded as forage plants. These included 294 plant genera visited by honey bees and 292 plant genera visited by different species of wild bees. Honey bees and wild bees share 176 plant genera in Denmark. Comparing the pairwise niche overlap for individual bee species, no significant relationship was found between their overlap and forage specialization or conservation status. Network analysis of the bee-plant interactions placed honey bees aside from most other bee species, specifically the module containing the honey bee had fewer links to any other modules, while the remaining modules were more highly inter-connected. Despite the lack of predictive relationship from the pairwise niche overlap, data for individual species could be summarized. Consequently, we have identified a set of operational parameters that, based on a high foraging overlap (>70%) and unfavorable conservation status (Vulnerable+Endangered+Critically Endangered), can guide both conservation actions and land management decisions in proximity to known or suspected populations of these species.


Asunto(s)
Abejas , Flores , Polen , Polinización , Animales , Conservación de los Recursos Naturales , Dinamarca , Especies en Peligro de Extinción
4.
PLoS One ; 15(7): e0235890, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32658919

RESUMEN

We are currently facing a large decline in bee populations worldwide. Who are the winners and losers? Generalist bee species, notably those able to shift their diet to new or alternative floral resources, are expected to be among the least vulnerable to environmental change. However, studies of interactions between bees and plants over large temporal and geographical scales are limited by a lack of historical records. Here, we used a unique opportunistic century-old countrywide database of bee specimens collected on plants to track changes in the plant-bee interaction network over time. In each historical period considered, and using a network-based modularity analysis, we identified some major groups of species interacting more with each other than with other species (i.e. modules). These modules were related to coherent functional groups thanks to an a posteriory trait-based analysis. We then compared over time the ecological specialization of bees in the network by computing their degree of interaction within and between modules. "True" specialist species (or peripheral species) are involved in few interactions both inside and between modules. We found a global loss of specialist species and specialist strategies. This means that bee species observed in each period tended to use more diverse floral resources from different ecological groups over time, highly specialist species tending to enter/leave the network. Considering the role and functional traits of species in the network, combined with a long-term time series, provides a new perspective for the study of species specialization.


Asunto(s)
Abejas/fisiología , Biodiversidad , Magnoliopsida/fisiología , Modelos Estadísticos , Polinización , Animales , Abejas/clasificación , Conducta Animal
5.
Zookeys ; 924: 1-114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308528

RESUMEN

Cyprus, the third largest island in the Mediterranean, constitutes a biodiversity hotspot with high rates of plant endemism. The wild bees of the island were studied extensively by the native George Mavromoustakis, a world-renowned bee taxonomist, who collected extensively on the island from 1916 to 1957 and summarised his results in a series of eight Cyprus-specific papers published from 1949 ["1948"] to 1957. The current work represents the first modern checklist of the wild bees of Cyprus, based on a compilation of previous publications, museum specimens and authors' recent collections. Overall, 369 verified wild bee species have been recorded on the island, with eleven species reported from Cyprus for the first time. The island hosts all six of the globally widespread bee families, with Apidae represented by 110 species, Megachilidae with 91, Andrenidae with 76, Halictidae with 72, Colletidae with 19, and Melittidae with 1. Twenty-one of the recorded bee species are endemic (i.e., 5.7 % endemism rate) and Cyprus ranks third after Lesvos and Sicily in known bee species richness among the Mediterranean islands. Previously unpublished records from various locations on Cyprus for 156 previously reported bee species are also provided in the study. The current work provides a baseline for future studies of wild bee diversity on the island of Cyprus and neighbouring regions.

6.
Ecol Evol ; 9(4): 1702-1714, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30847066

RESUMEN

Body size is an integral functional trait that underlies pollination-related ecological processes, yet it is often impractical to measure directly. Allometric scaling laws have been used to overcome this problem. However, most existing models rely upon small sample sizes, geographically restricted sampling and have limited applicability for non-bee taxa. Allometric models that consider biogeography, phylogenetic relatedness, and intraspecific variation are urgently required to ensure greater accuracy. We measured body size as dry weight and intertegular distance (ITD) of 391 bee species (4,035 specimens) and 103 hoverfly species (399 specimens) across four biogeographic regions: Australia, Europe, North America, and South America. We updated existing models within a Bayesian mixed-model framework to test the power of ITD to predict interspecific variation in pollinator dry weight in interaction with different co-variates: phylogeny or taxonomy, sexual dimorphism, and biogeographic region. In addition, we used ordinary least squares regression to assess intraspecific dry weight ~ ITD relationships for ten bees and five hoverfly species. Including co-variates led to more robust interspecific body size predictions for both bees and hoverflies relative to models with the ITD alone. In contrast, at the intraspecific level, our results demonstrate that the ITD is an inconsistent predictor of body size for bees and hoverflies. The use of allometric scaling laws to estimate body size is more suitable for interspecific comparative analyses than assessing intraspecific variation. Collectively, these models form the basis of the dynamic R package, "pollimetry," which provides a comprehensive resource for allometric pollination research worldwide.

7.
Glob Chang Biol ; 24(1): 101-116, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28805965

RESUMEN

Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns.


Asunto(s)
Abejas , Biodiversidad , Cambio Climático , Unión Europea , Modelos Biológicos , Animales , Conservación de los Recursos Naturales , Europa (Continente)
8.
Divers Distrib ; 23(12): 1435-1446, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29200933

RESUMEN

Aim: Agricultural intensification and urbanization are important drivers of biodiversity change in Europe. Different aspects of bee community diversity vary in their sensitivity to these pressures, as well as independently influencing ecosystem service provision (pollination). To obtain a more comprehensive understanding of human impacts on bee diversity across Europe, we assess multiple, complementary indices of diversity. Location: One Thousand four hundred and forty six sites across Europe. Methods: We collated data on bee occurrence and abundance from the published literature and supplemented them with the PREDICTS database. Using Rao's Quadratic Entropy, we assessed how species, functional and phylogenetic diversity of 1,446 bee communities respond to land-use characteristics including land-use class, cropland intensity, human population density and distance to roads. We combined these models with statistically downscaled estimates of land use in 2005 to estimate and map-at a scale of approximately 1 km2-the losses in diversity relative to semi-natural/natural baseline (the predicted diversity of an uninhabited grid square, consisting only of semi-natural/natural vegetation). Results: We show that-relative to the predicted local diversity in uninhabited semi-natural/natural habitat-half of all EU27 countries have lost over 10% of their average local species diversity and two-thirds of countries have lost over 5% of their average local functional and phylogenetic diversity. All diversity measures were generally lower in pasture and higher-intensity cropland than in semi-natural/natural vegetation, but facets of diversity showed less consistent responses to human population density. These differences have led to marked spatial mismatches in losses: losses in phylogenetic diversity were in some areas almost 20 percentage points (pp.) more severe than losses in species diversity, but in other areas losses were almost 40 pp. less severe. Main conclusions: These results highlight the importance of exploring multiple measures of diversity when prioritizing and evaluating conservation actions, as species-diverse assemblages may be phylogenetically and functionally impoverished, potentially threatening pollination service provision.

9.
Ecol Evol ; 7(11): 3836-3846, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28616180

RESUMEN

Habitat restoration is a key measure to counteract negative impacts on biodiversity from habitat loss and fragmentation. To assess success in restoring not only biodiversity, but also functionality of communities, we should take into account the re-assembly of species trait composition across taxa. Attaining such functional restoration would depend on the landscape context, vegetation structure, and time since restoration. We assessed how trait composition of plant and pollinator (bee and hoverfly) communities differ between abandoned, restored (formerly abandoned) or continuously grazed (intact) semi-natural pastures. In restored pastures, we also explored trait composition in relation to landscape context, vegetation structure, and pasture management history. Abandoned pastures differed from intact and restored pastures in trait composition of plant communities, and as expected, had lower abundances of species with traits associated with grazing adaptations. Further, plant trait composition in restored pastures became increasingly similar to that in intact pastures with increasing time since restoration. On the contrary, the trait composition of pollinator communities in both abandoned and restored pastures remained similar to intact pastures. The trait composition for both bees and hoverflies was influenced by flower abundance and, for bees, by connectivity to other intact grasslands in the landscape. The divergent responses across organism groups appeared to be mainly related to the limited dispersal ability and long individual life span in plants, the high mobility of pollinators, and the dependency of semi-natural habitat for bees. Our results, encompassing restoration effects on trait composition for multiple taxa along a gradient in both time (time since restoration) and space (connectivity), reveal how interacting communities of plants and pollinators are shaped by different trait-environmental relationships. Complete functional restoration of pastures needs for more detailed assessments of both plants dispersal in time and of resources available within pollinator dispersal range.

10.
Ecol Lett ; 19(10): 1228-36, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27531385

RESUMEN

Mass-flowering crops (MFCs) are increasingly cultivated and might influence pollinator communities in MFC fields and nearby semi-natural habitats (SNHs). Across six European regions and 2 years, we assessed how landscape-scale cover of MFCs affected pollinator densities in 408 MFC fields and adjacent SNHs. In MFC fields, densities of bumblebees, solitary bees, managed honeybees and hoverflies were negatively related to the cover of MFCs in the landscape. In SNHs, densities of bumblebees declined with increasing cover of MFCs but densities of honeybees increased. The densities of all pollinators were generally unrelated to the cover of SNHs in the landscape. Although MFC fields apparently attracted pollinators from SNHs, in landscapes with large areas of MFCs they became diluted. The resulting lower densities might negatively affect yields of pollinator-dependent crops and the reproductive success of wild plants. An expansion of MFCs needs to be accompanied by pollinator-supporting practices in agricultural landscapes.


Asunto(s)
Abejas/fisiología , Productos Agrícolas/fisiología , Dípteros/fisiología , Flores/fisiología , Polinización/fisiología , Animales , Europa (Continente) , Densidad de Población
11.
Proc Biol Sci ; 282(1806): 20150294, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25833861

RESUMEN

Change in land cover is thought to be one of the key drivers of pollinator declines, and yet there is a dearth of studies exploring the relationships between historical changes in land cover and shifts in pollinator communities. Here, we explore, for the first time, land cover changes in England over more than 80 years, and relate them to concurrent shifts in bee and wasp species richness and community composition. Using historical data from 14 sites across four counties, we quantify the key land cover changes within and around these sites and estimate the changes in richness and composition of pollinators. Land cover changes within sites, as well as changes within a 1 km radius outside the sites, have significant effects on richness and composition of bee and wasp species, with changes in edge habitats between major land classes also having a key influence. Our results highlight not just the land cover changes that may be detrimental to pollinator communities, but also provide an insight into how increases in habitat diversity may benefit species diversity, and could thus help inform policy and practice for future land management.


Asunto(s)
Abejas/fisiología , Biodiversidad , Ecosistema , Avispas/fisiología , Animales , Conservación de los Recursos Naturales , Inglaterra , Polinización , Factores de Tiempo
12.
Ecol Entomol ; 40(Insects and Ecosystem Services 28th Symposium of the Royal Entomological Society of LondonS1): 22-35, 2015 09.
Artículo en Inglés | MEDLINE | ID: mdl-26877581

RESUMEN

In 2013, an opportunity arose in England to develop an agri-environment package for wild pollinators, as part of the new Countryside Stewardship scheme launched in 2015. It can be understood as a 'policy window', a rare and time-limited opportunity to change policy, supported by a narrative about pollinator decline and widely supported mitigating actions. An agri-environment package is a bundle of management options that together supply sufficient resources to support a target group of species. This paper documents information that was available at the time to develop such a package for wild pollinators. Four questions needed answering: (1) Which pollinator species should be targeted? (2) Which resources limit these species in farmland? (3) Which management options provide these resources? (4) What area of each option is needed to support populations of the target species? Focussing on wild bees, we provide tentative answers that were used to inform development of the package. There is strong evidence that floral resources can limit wild bee populations, and several sources of evidence identify a set of agri-environment options that provide flowers and other resources for pollinators. The final question could only be answered for floral resources, with a wide range of uncertainty. We show that the areas of some floral resource options in the basic Wild Pollinator and Farmland Wildlife Package (2% flower-rich habitat and 1 km flowering hedgerow), are sufficient to supply a set of six common pollinator species with enough pollen to feed their larvae at lowest estimates, using minimum values for estimated parameters where a range was available. We identify key sources of uncertainty, and stress the importance of keeping the Package flexible, so it can be revised as new evidence emerges about how to achieve the policy aim of supporting pollinators on farmland.

13.
J Appl Ecol ; 52(6): 1567-1577, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-27546902

RESUMEN

Bees are a functionally important and economically valuable group, but are threatened by land-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species' ecological traits.Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation), traits and trait × land-use interactions, in explaining species occurrence and abundance.Species' sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats. Synthesis and applications. Rather than targeting particular species or settings, conservation actions may be more effective if focused on mitigating situations where species' traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.

14.
PeerJ ; 2: e328, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24749007

RESUMEN

Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.

15.
Ecol Evol ; 4(4): 370-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24634722

RESUMEN

Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.

16.
Proc Biol Sci ; 277(1690): 2075-82, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20219735

RESUMEN

Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species-area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.


Asunto(s)
Abejas/fisiología , Ecosistema , Poaceae/fisiología , Animales , Abejas/clasificación , Conducta Animal , Tamaño Corporal , Dieta , Europa (Continente) , Densidad de Población , Conducta Social , Especificidad de la Especie
17.
J Anim Ecol ; 78(1): 98-108, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18705629

RESUMEN

1. Valuable insights into mechanisms of community responses to environmental change can be gained by analysing in tandem the variation in functional and taxonomic composition along environmental gradients. 2. We assess the changes in species and functional trait composition (i.e. dominant traits and functional diversity) of diverse bee communities in contrasting fire-driven systems in two climatic regions: Mediterranean (scrub habitats in Israel) and temperate (chestnut forests in southern Switzerland). 3. In both climatic regions, there were shifts in species diversity and composition related to post-fire age. In the temperate region, functional composition responded markedly to fire; however, in the Mediterranean, the taxonomic response to fire was not matched by functional replacement. 4. These results suggest that greater functional stability to fire in the Mediterranean is achieved by replacement of functionally similar species (i.e. functional redundancy) which dominate under different environmental conditions in the heterogeneous landscapes of the region. In contrast, the greater functional response in the temperate region was attributed to a more rapid post-fire vegetation recovery and shorter time-window when favourable habitat was available relative to the Mediterranean. 5. Bee traits can be used to predict the functional responses of bee communities to environmental changes in habitats of conservation importance in different regions with distinct disturbance regimes. However, predictions cannot be generalized from one climatic region to another where distinct habitat configurations occur.


Asunto(s)
Abejas/fisiología , Conducta Animal/fisiología , Clima , Incendios , Animales , Biodiversidad , Región Mediterránea , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...