Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
1.
Nat Commun ; 15(1): 3578, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678028

RESUMEN

Delineation of microbial habitats within the soil matrix and characterization of their environments and metabolic processes are crucial to understand soil functioning, yet their experimental identification remains persistently limited. We combined single- and triple-energy X-ray computed microtomography with pore specific allocation of 13C labeled glucose and subsequent stable isotope probing to demonstrate how long-term disparities in vegetation history modify spatial distribution patterns of soil pore and particulate organic matter drivers of microbial habitats, and to probe bacterial communities populating such habitats. Here we show striking differences between large (30-150 µm Ø) and small (4-10 µm Ø) soil pores in (i) microbial diversity, composition, and life-strategies, (ii) responses to added substrate, (iii) metabolic pathways, and (iv) the processing and fate of labile C. We propose a microbial habitat classification concept based on biogeochemical mechanisms and localization of soil processes and also suggests interventions to mitigate the environmental consequences of agricultural management.


Asunto(s)
Bacterias , Ecosistema , Microbiota , Microbiología del Suelo , Suelo , Suelo/química , Microbiota/fisiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Microtomografía por Rayos X , Isótopos de Carbono/metabolismo , Porosidad , Carbono/metabolismo , Biodiversidad , Glucosa/metabolismo
2.
Antimicrob Agents Chemother ; 68(5): e0101023, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501805

RESUMEN

A major challenge for tuberculosis (TB) drug development is to prioritize promising combination regimens from a large and growing number of possibilities. This includes demonstrating individual drug contributions to the activity of higher-order combinations. A BALB/c mouse TB infection model was used to evaluate the contributions of each drug and pairwise combination in the clinically relevant Nix-TB regimen [bedaquiline-pretomanid-linezolid (BPaL)] during the first 3 weeks of treatment at human equivalent doses. The rRNA synthesis (RS) ratio, an exploratory pharmacodynamic (PD) marker of ongoing Mycobacterium tuberculosis rRNA synthesis, together with solid culture CFU counts and liquid culture time to positivity (TTP) were used as PD markers of treatment response in lung tissue; and their time-course profiles were mathematically modeled using rate equations with pharmacologically interpretable parameters. Antimicrobial interactions were quantified using Bliss independence and Isserlis formulas. Subadditive (or antagonistic) and additive effects on bacillary load, assessed by CFU and TTP, were found for bedaquiline-pretomanid and linezolid-containing pairs, respectively. In contrast, subadditive and additive effects on rRNA synthesis were found for pretomanid-linezolid and bedaquiline-containing pairs, respectively. Additionally, accurate predictions of the response to BPaL for all three PD markers were made using only the single-drug and pairwise effects together with an assumption of negligible three-way drug interactions. The results represent an experimental and PD modeling approach aimed at reducing combinatorial complexity and improving the cost-effectiveness of in vivo systems for preclinical TB regimen development.


Asunto(s)
Antituberculosos , Diarilquinolinas , Modelos Animales de Enfermedad , Linezolid , Ratones Endogámicos BALB C , Mycobacterium tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/farmacocinética , Antituberculosos/uso terapéutico , Linezolid/farmacología , Linezolid/farmacocinética , Diarilquinolinas/farmacología , Diarilquinolinas/farmacocinética , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Femenino , Nitroimidazoles/farmacología , Nitroimidazoles/farmacocinética , Nitroimidazoles/uso terapéutico , Quimioterapia Combinada , Pulmón/microbiología , Pulmón/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Pruebas de Sensibilidad Microbiana , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología
3.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065184

RESUMEN

An x-ray imaging scheme using spherically bent crystals was implemented on the Z-machine to image x rays emitted by the hot, dense plasma generated by a Magnetized Liner Inertial Fusion (MagLIF) target. This diagnostic relies on a spherically bent crystal to capture x-ray emission over a narrow spectral range (<15 eV), which is established by a limiting aperture placed on the Rowland circle. The spherical crystal optic provides the necessary high-throughput and large field-of-view required to produce a bright image over the entire, one-cm length of the emitting column of a plasma. The average spatial resolution was measured and determined to be 18 µm for the highest resolution configuration. With this resolution, the radial size of the stagnation column can be accurately determined and radial structures, such as bifurcations in the column, are clearly resolved. The success of the spherical-crystal imager has motivated the implementation of a new, two-crystal configuration for identifying sources of spectral line emission using a differential imaging technique.

4.
bioRxiv ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37986955

RESUMEN

A major challenge for tuberculosis (TB) drug development is to prioritize promising combination regimens from a large and growing number of possibilities. This includes demonstrating individual drug contributions to the activity of higher-order combinations. A BALB/c mouse TB infection model was used to evaluate the contributions of each drug and pairwise combination in the clinically relevant Nix-TB regimen (bedaquiline-pretomanid-linezolid [BPaL]) during the first three weeks of treatment at human equivalent doses. RS ratio, an exploratory pharmacodynamic (PD) marker of ongoing Mycobacterium tuberculosis rRNA synthesis, to-gether with solid culture CFU and liquid culture time to positivity (TTP) were used as PD markers of treatment response in lung tissue; and their time course profiles were mathematically modeled using rate equations with pharmacologically interpretable parameters. Antimicrobial interactions were quantified using Bliss independence and Isserlis formulas. Subadditive (or antagonistic) and additive effects on bacillary load, assessed by CFU and TTP, were found for bedaquiline-pretomanid and linezolid-containing pairs, respectively. In contrast, subadditive and additive effects on rRNA synthesis were found for pretomanid-linezolid and bedaquiline-containing pairs, respectively. Additionally, accurate predictions of the response to BPaL for all three PD markers were made using only the single-drug and pairwise effects together with an assumption of negligible three-way drug interactions. The results represent an experimental and PD modeling approach aimed at reducing combinatorial complexity and improving the cost-effectiveness of in vivo systems for preclinical TB regimen development.

6.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184347

RESUMEN

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

7.
Genomics Inform ; 21(1): e4, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37037462

RESUMEN

Coronavirus disease 2019 (COVID-19) is an inflammatory and infectious disease caused by severe acute respiratory syndrome coronavirus 2 virus with a complex pathophysiology. While COVID-19 vaccines and boosters are available, treatment of the disease is primarily supportive and symptomatic. Several research have suggested the potential of herbal medicines as an adjunctive treatment for the disease. A popular herbal medicine approved in the Philippines for the treatment of acute respiratory disease is Vitex negundo L. In fact, the Department of Science and Technology of the Philippines has funded a clinical trial to establish its potential as an adjunctive treatment for COVID-19. Here, we utilized network pharmacology and molecular docking in determining pivotal targets of Vitex negundo compounds against COVID-19. The results showed that significant targets of Vitex negundo compounds in COVID-19 are CSB, SERPINE1, and PLG which code for cathepsin B, plasminogen activator inhibitor-1, and plasminogen, respectively. Molecular docking revealed that α-terpinyl acetate and geranyl acetate have good binding affinity in cathepsin B; 6,7,4-trimethoxyflavanone, 5,6,7,8,3',4',5'-heptamethoxyflavone, artemetin, demethylnobiletin, gardenin A, geranyl acetate in plasminogen; and 7,8,4-trimethoxyflavanone in plasminogen activator inhibitor-1. While the results are promising, these are bound to the limitations of computational methods and further experimentation are needed to completely establish the molecular mechanisms of Vitex negundo against COVID-19.

8.
Sci Total Environ ; 879: 162906, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36934923

RESUMEN

Despite the extensive application of the Soil and Water Assessment Tool (SWAT) for water quality modeling, its ability to simulate soil inorganic nitrogen (SIN) dynamics in agricultural landscapes has not been directly verified. Here, we improved and evaluated the SWAT-Carbon (SWAT-C) model for simulating long-term (1984-2020) dynamics of SIN for 40 cropping system treatments in the U.S. Midwest. We added one new nitrification and two new denitrification algorithms to the default SWAT version, resulting in six combinations of nitrification and denitrification options with varying performance in simulating SIN. The combination of the existing nitrification method in SWAT and the second newly added denitrification method performed the best, achieving R, NSE, PBIAS, and RMSE of 0.63, 0.29, -4.7 %, and 16.0 kg N ha-1, respectively. This represents a significant improvement compared to the existing methods. In general, the revised SWAT-C model's performance was comparable to or better than other agroecosystem models tested in previous studies for assessing the availability of SIN for plant growth in different cropping systems. Sensitivity analysis showed that parameters controlling soil organic matter decomposition, nitrification, and denitrification were most sensitive for SIN simulation. Using SWAT-C for improved prediction of plant-available SIN is expected to better inform agroecosystem management decisions to ensure crop productivity while minimizing the negative environmental impacts caused by fertilizer application.

10.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-976800

RESUMEN

Coronavirus disease 2019 (COVID-19) is an inflammatory and infectious disease caused by severe acute respiratory syndrome coronavirus 2 virus with a complex pathophysiology. While COVID-19 vaccines and boosters are available, treatment of the disease is primarily supportive and symptomatic. Several research have suggested the potential of herbal medicines as an adjunctive treatment for the disease. A popular herbal medicine approved in the Philippines for the treatment of acute respiratory disease is Vitex negundo L. In fact, the Department of Science and Technology of the Philippines has funded a clinical trial to establish its potential as an adjunctive treatment for COVID-19. Here, we utilized network pharmacology and molecular docking in determining pivotal targets of Vitex negundo compounds against COVID-19. The results showed that significant targets of Vitex negundo compounds in COVID-19 are CSB, SERPINE1, and PLG which code for cathepsin B, plasminogen activator inhibitor-1, and plasminogen, respectively. Molecular docking revealed that α-terpinyl acetate and geranyl acetate have good binding affinity in cathepsin B; 6,7,4-trimethoxyflavanone, 5,6,7,8,3',4',5'-heptamethoxyflavone, artemetin, demethylnobiletin, gardenin A, geranyl acetate in plasminogen; and 7,8,4-trimethoxyflavanone in plasminogen activator inhibitor-1. While the results are promising, these are bound to the limitations of computational methods and further experimentation are needed to completely establish the molecular mechanisms of Vitex negundo against COVID-19.

11.
Sci Rep ; 12(1): 11729, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821511

RESUMEN

Highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage (GsGd), which threaten the health of poultry, wildlife and humans, are spreading across Asia, Europe, Africa and North America but are currently absent from South America and Oceania. In December 2021, H5N1 HPAI viruses were detected in poultry and a free-living gull in St. John's, Newfoundland and Labrador, Canada. Our phylogenetic analysis showed that these viruses were most closely related to HPAI GsGd viruses circulating in northwestern Europe in spring 2021. Our analysis of wild bird migration suggested that these viruses may have been carried across the Atlantic via Iceland, Greenland/Arctic or pelagic routes. The here documented incursion of HPAI GsGd viruses into North America raises concern for further virus spread across the Americas by wild bird migration.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Europa (Continente)/epidemiología , Gansos , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , América del Norte/epidemiología , Filogenia , Aves de Corral
12.
Glob Chang Biol ; 28(16): 4912-4919, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35638387

RESUMEN

Meeting end-of-century global warming targets requires aggressive action on multiple fronts. Recent reports note the futility of addressing mitigation goals without fully engaging the agricultural sector, yet no available assessments combine both nature-based solutions (reforestation, grassland and wetland protection, and agricultural practice change) and cellulosic bioenergy for a single geographic region. Collectively, these solutions might offer a suite of climate, biodiversity, and other benefits greater than either alone. Nature-based solutions are largely constrained by the duration of carbon accrual in soils and forest biomass; each of these carbon pools will eventually saturate. Bioenergy solutions can last indefinitely but carry significant environmental risk if carelessly deployed. We detail a simplified scenario for the United States that illustrates the benefits of combining approaches. We assign a portion of non-forested former cropland to bioenergy sufficient to meet projected mid-century transportation needs, with the remainder assigned to nature-based solutions such as reforestation. Bottom-up mitigation potentials for the aggregate contributions of crop, grazing, forest, and bioenergy lands are assessed by including in a Monte Carlo model conservative ranges for cost-effective local mitigation capacities, together with ranges for (a) areal extents that avoid double counting and include realistic adoption rates and (b) the projected duration of different carbon sinks. The projected duration illustrates the net effect of eventually saturating soil carbon pools in the case of most strategies, and additionally saturating biomass carbon pools in the case of forest management. Results show a conservative end-of-century mitigation capacity of 110 (57-178) Gt CO2 e for the U.S., ~50% higher than existing estimates that prioritize nature-based or bioenergy solutions separately. Further research is needed to shrink uncertainties, but there is sufficient confidence in the general magnitude and direction of a combined approach to plan for deployment now.


Asunto(s)
Agricultura , Clima , Agricultura/métodos , Biomasa , Carbono , Secuestro de Carbono , Suelo , Estados Unidos
13.
Glob Chang Biol ; 28(4): 1446-1457, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34758177

RESUMEN

Low-power, open-path gas sensors enable eddy covariance (EC) flux measurements in remote areas without line power. However, open-path flux measurements are sensitive to fluctuations in air temperature, pressure, and humidity. Laser-based, open-path sensors with the needed sensitivity for trace gases like methane (CH4 ) and nitrous oxide (N2 O) are impacted by additional spectroscopic effects. Corrections for these effects, especially those related to temperature fluctuations, often exceed the flux of gases, leading to large uncertainties in the associated fluxes. For example, the density and spectroscopic corrections arising from temperature fluctuations can be one or two orders of magnitude greater than background N2 O fluxes. Consequently, measuring background fluxes with laser-based, open-path sensors is extremely challenging, particularly for N2 O and gases with similar high-precision requirements. We demonstrate a new laser-based, open-path N2 O sensor and a general approach applicable to other gases that minimizes temperature-related corrections for EC flux measurements. The method identifies absorption lines with spectroscopic effects in the opposite direction of density effects from temperature and, thus, density and spectroscopic effects nearly cancel one another. The new open-path N2 O sensor was tested at a corn (Zea mays L.) field in Southwestern Michigan, United States. The sensor had an optimal precision of 0.1 ppbv at 10 Hz and power consumption of 50 W. Field trials showed that temperature-related corrections were 6% of density corrections, reducing EC random errors by 20-fold compared to previously examined lines. Measured open-path N2 O EC fluxes showed excellent agreement with those made with static chambers (m = 1.0 ± 0.3; r2  = .96). More generally, we identified absorption lines for CO2 and CH4  flux measurements that can reduce the temperature-related corrections by 10-100 times compared to existing open-path sensors. The proposed method provides a new direction for future open-path sensors, facilitating the expansion of accurate EC flux measurements.


Asunto(s)
Gases , Óxido Nitroso , Dióxido de Carbono , Metano , Temperatura
14.
Front Plant Sci ; 13: 1023571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684783

RESUMEN

Leaf photosynthesis of perennial grasses usually decreases markedly from early to late summer, even when the canopy remains green and environmental conditions are favorable for photosynthesis. Understanding the physiological basis of this photosynthetic decline reveals the potential for yield improvement. We tested the association of seasonal photosynthetic decline in switchgrass (Panicum virgatum L.) with water availability by comparing plants experiencing ambient rainfall with plants in a rainfall exclusion experiment in Michigan, USA. For switchgrass exposed to ambient rainfall, daily net CO2 assimilation ( A n e t ' ) declined from 0.9 mol CO2 m-2 day-1 in early summer to 0.43 mol CO2 m-2 day-1 in late summer (53% reduction; P<0.0001). Under rainfall exclusion shelters, soil water content was 73% lower and A n e t ' was 12% and 26% lower in July and September, respectively, compared to those of the rainfed plants. Despite these differences, the seasonal photosynthetic decline was similar in the season-long rainfall exclusion compared to the rainfed plants; A n e t ' in switchgrass under the shelters declined from 0.85 mol CO2 m-2 day-1 in early summer to 0.39 mol CO2 m-2 day-1 (54% reduction; P<0.0001) in late summer. These results suggest that while water deficit limited A n e t ' late in the season, abundant late-season rainfalls were not enough to restore A n e t ' in the rainfed plants to early-summer values suggesting water deficit was not the sole driver of the decline. Alongside change in photosynthesis, starch in the rhizomes increased 4-fold (P<0.0001) and stabilized when leaf photosynthesis reached constant low values. Additionally, water limitation under shelters had no negative effects on the timing of rhizome starch accumulation, and rhizome starch content increased ~ 6-fold. These results showed that rhizomes also affect leaf photosynthesis during the growing season. Towards the end of the growing season, when vegetative growth is completed and rhizome reserves are filled, diminishing rhizome sink activity likely explained the observed photosynthetic declines in plants under both ambient and reduced water availability.

15.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-987193

RESUMEN

Background@#Breast cancer is one of the leading causes of deaths in women worldwide, affecting nearly 7.8 million people. In 2020 in the Philippines, there were around 150,000 Filipinos who were newly diagnosed with the disease. The complex pathogenesis of breast cancer in addition to the emergence of resistance to therapy makes the treatment very challenging. Compounds that can antagonize the effects of estradiol towards ER-α, especially the mutant Y537S type are sought for. @*Objectives@#The focus of this study was the in-silico assessment of the reported secondary metabolites from Phaseolus vulgaris L. (fam. Fabaceae) towards the wild-type and mutant ER-α. Bioisosteric replacement was conducted to generate analogs that can possibly have a comparable binding affinity as estradiol towards estrogen receptors alpha. @*Results@#Majority of the secondary metabolites present in Phaseolus vulgaris L. belong to the group of phytoestrogens, phytosterols, and plant hormones. These groups of compounds exhibited favorable binding energies toward the wild-type and mutant (Y537S) estrogen receptors alpha. Moreover, they bind to the same ligand binding pocket as estradiol, involving similar interactions and amino acid residues. @*Conclusion@#Compounds from Phaseolus vulgaris L. can potentially target ER-α. Four gibberellin A19 analogs were generated that exhibited favorable binding towards the wild- and mutant- ER-α and may be further optimized to obtain a promisin gcompound against breast cancer.


Asunto(s)
Neoplasias de la Mama , Simulación del Acoplamiento Molecular
16.
Sci Rep ; 11(1): 20367, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645938

RESUMEN

Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha-1 year-1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March-November 2009-2016 using tension lysimeters. Soil test P (0-25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L-1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha-1 year-1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may leach legacy P from past cropland management.

17.
Rev Sci Instrum ; 92(7): 073507, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34340441

RESUMEN

The very short burn time and small size of burning plasmas created at advanced laser-fusion facilities will require high-spatial-resolution imaging diagnostics with fast time resolution. These instruments will need to function in an environment of extremely large neutron fluxes that will cause conventional diagnostics to fail because of radiation damage and induced background levels. One solution to this challenge is to perform an ultrafast conversion of the x-ray signals into the optical regime before the neutrons are able to reach the detector and then to relay image the signal out of the chamber and into a shielded bunker, protected from the effects of these neutrons. With this goal in mind, the OMEGA laser was used to demonstrate high-temporal-resolution x-ray imaging by using an x-ray snout to image an imploding backlighter capsule onto a semiconductor. The semiconductor was simultaneously probed with the existing velocity interferometry system for any surface reflector (VISAR) diagnostic, which uses an optical streak camera and provided a one-dimensional image of the phase in the semiconductor as a function of time. The phase induced in the semiconductor was linearly proportional to the x-ray emission from the backlighter capsule. This approach would then allow a sacrificial semiconductor to be attached at the end of an optical train with the VISAR and optical streak camera placed in a shielded bunker to operate in a high neutron environment and obtain time-dependent one-dimensional x-ray images or time-dependent x-ray spectra from a burning plasma.

18.
Glob Chang Biol ; 27(21): 5599-5613, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34383336

RESUMEN

The long-term contribution of nitrification to nitrous oxide (N2 O) emissions from terrestrial ecosystems is poorly known and thus poorly constrained in biogeochemical models. Here, using Bayesian inference to couple 25 years of in situ N2 O flux measurements with site-specific Michaelis-Menten kinetics of nitrification-derived N2 O, we test the relative importance of nitrification-derived N2 O across six cropped and unmanaged ecosystems along a management intensity gradient in the U.S. Midwest. We found that the maximum potential contribution from nitrification to in situ N2 O fluxes was 13%-17% in a conventionally fertilized annual cropping system, 27%-42% in a low-input cover-cropped annual cropping system, and 52%-63% in perennial systems including a late successional deciduous forest. Actual values are likely to be <10% of these values because of low N2 O yields in cultured nitrifiers (typically 0.04%-8% of NH3 oxidized) and competing sinks for available NH4+ in situ. Most nitrification-derived N2 O was produced by ammonia-oxidizing bacteria rather than archaea, who appeared responsible for no more than 30% of nitrification-derived N2 O production in all but one ecosystem. Although the proportion of nitrification-derived N2 O production was lowest in annual cropping systems, these ecosystems nevertheless produced more nitrification-derived N2 O (higher Vmax ) than perennial and successional ecosystems. We conclude that nitrification is minor relative to other sources of N2 O in all ecosystems examined.


Asunto(s)
Nitrificación , Óxido Nitroso , Amoníaco , Archaea , Teorema de Bayes , Ecosistema , Óxido Nitroso/análisis , Oxidación-Reducción , Suelo , Microbiología del Suelo
19.
Br Med Bull ; 139(1): 48-58, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34227647

RESUMEN

INTRODUCTION: Open tibial fractures are the most common open long bone fracture, despite this, the management of these complex injuries still remains a topic of discussion amongst orthopaedic surgeons. SOURCES OF DATA: We searched the EMBASE, MEDLINE and Google Scholar and a systematic review of 7500 articles, leaving 23 after exclusion criteria were applied, in order to analyse the management of open tibial fractures. AREAS OF AGREEMENT AND CONTROVERSY: Infection was noted to be the most significant concern amongst authors, with definitive external fixation having a high rate of superficial pin-site infection and internal fixation having a high deep infection rate. GROWING POINTS: It is essential to have a combined ortho-plastic approach to the management of these fractures as muscle flaps were the most common form of soft tissue coverage. AREAS TIMELY FOR DEVELOPING RESEARCH: A national pragmatic trial into the management of open tibial fractures is required looking at fixation methods and soft tissue coverage, with at least a 2-year follow-up in order to ascertain the most appropriate management of these fractures and patient-related outcomes.


Asunto(s)
Fracturas Abiertas , Fracturas de la Tibia , Adulto , Fijación Interna de Fracturas , Fracturas Abiertas/cirugía , Humanos , Estudios Retrospectivos , Infección de la Herida Quirúrgica/terapia , Fracturas de la Tibia/cirugía , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...