Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 476: 135107, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013322

RESUMEN

The objectives of this research were to assess ingested plastics and accumulated heavy metals in four urban gull species. Additionally, the relationships between ingested plastics and selected demographic and health metrics were assessed. Between 2020-2021 during the non-breeding seasons, 105 gulls (46 American herring gulls (HERG, Larus argentatus smithsonianus), 39 great black-backed gulls (GBBG, Larus marinus), 16 Iceland gulls (Larus glaucoides), 4 glaucous gulls (Larus hyperboreus)) were killed at a landfill in coastal Newfoundland and Labrador, Canada, as part of separate, permitted kill-to-scare operations related to aircraft safety. Birds were necropsied, the upper gastrointestinal tract contents were processed using standard techniques, and livers were analyzed for accumulated As, Cd, Hg, and Pb. The relationships between ingested plastics, demographics, and health metrics were assessed in HERG and GBBG. Across all four species, 85 % of birds had ingested at least one piece of anthropogenic debris, with 79 % ingesting at least one piece of plastic. We detected interspecific differences in plastic ingestion and hepatic trace metals, with increased ingested plastics detected in GBBG compared with HERG. For GBBG, levels of ingested plastic were relatively greater for birds with higher scaled mass index, while HERG with more ingested plastic had higher liver lead concentrations.

2.
mBio ; : e0320323, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012149

RESUMEN

Following the detection of novel highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b in Newfoundland, Canada, in late 2021, avian influenza virus (AIV) surveillance in wild birds was scaled up across Canada. Herein, we present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds during the first year (November 2021-November 2022) following the incursions of HPAIV from Eurasia. The key objectives of the surveillance program were to (i) identify the presence, distribution, and spread of HPAIV and other AIVs; (ii) identify wild bird morbidity and mortality associated with HPAIV; (iii) identify the range of wild bird species infected by HPAIV; and (iv) genetically characterize detected AIV. A total of 6,246 sick and dead wild birds were tested, of which 27.4% were HPAIV positive across 12 taxonomic orders and 80 species. Geographically, HPAIV detections occurred in all Canadian provinces and territories, with the highest numbers in the Atlantic and Central Flyways. Temporally, peak detections differed across flyways, though the national peak occurred in April 2022. In an additional 11,295 asymptomatic harvested or live-captured wild birds, 5.2% were HPAIV positive across 3 taxonomic orders and 19 species. Whole-genome sequencing identified HPAIV of Eurasian origin as most prevalent in the Atlantic Flyway, along with multiple reassortants of mixed Eurasian and North American origins distributed across Canada, with moderate structuring at the flyway scale. Wild birds were victims and reservoirs of HPAIV H5N1 2.3.4.4b, underscoring the importance of surveillance encompassing samples from sick and dead, as well as live and harvested birds, to provide insights into the dynamics and potential impacts of the HPAIV H5N1 outbreak. This dramatic shift in the presence and distribution of HPAIV in wild birds in Canada highlights a need for sustained investment in wild bird surveillance and collaboration across interagency partners. IMPORTANCE: We present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds in the year following the first detection of highly pathogenic avian influenza virus (HPAIV) H5N1 on the continent. The surveillance program tested over 17,000 wild birds, both sick and apparently healthy, which revealed spatiotemporal and taxonomic patterns in HPAIV prevalence and mortality across Canada. The significant shift in the presence and distribution of HPAIV in Canada's wild birds underscores the need for sustained investment in wild bird surveillance and collaboration across One Health partners.

3.
Ibis (Lond 1859) ; 165(1): 161-178, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36589762

RESUMEN

Reproduction in procellariiform birds is characterized by a single egg clutch, slow development, a long breeding season and obligate biparental care. Female Leach's Storm Petrels Hydrobates leucorhous, nearly monomorphic members of this order, produce eggs that are between 20 and 25% of adult body weight. We tested whether female foraging behaviour differs from male foraging behaviour during the ~ 44-day incubation period across seven breeding colonies in the Northwest Atlantic. Over six breeding seasons, we used a combination of Global Positioning System and Global Location Sensor devices to measure characteristics of individual foraging trips during the incubation period. Females travelled significantly greater distances and went farther from the breeding colony than did males on individual foraging trips. For both sexes, the longer the foraging trip, the greater the distance. Independent of trip duration, females travelled farther, and spent a greater proportion of their foraging trips prospecting widely as defined by behavioural categories derived from a Hidden Markov Model. For both sexes, trip duration decreased with date. Sex differences in these foraging metrics were apparently not a consequence of morphological differences or spatial segregation. Our data are consistent with the idea that female foraging strategies differed from male foraging strategies during incubation in ways that would be expected if females were still compensating for egg formation.

4.
Mov Ecol ; 10(1): 45, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329536

RESUMEN

BACKGROUND: Homeothermic marine animals in Polar Regions face an energetic bottleneck in winter. The challenges of short days and cold temperatures are exacerbated for flying seabirds with small body size and limited fat stores. We use biologging approaches to examine how habitat, weather, and moon illumination influence behaviour and energetics of a marine bird species, thick-billed murres (Uria lomvia). METHODS: We used temperature-depth-light recorders to examine strategies murres use to survive winter in the Northwest Atlantic, where contrasting currents create two distinct marine habitats: cold (-0.1 ± 1.2 °C), shallower water along the Labrador Shelf and warmer (3.1 ± 0.3 °C), deep water in the Labrador Basin. RESULTS: In the cold shelf water, murres used a high-energy strategy, with more flying and less diving each day, resulting in high daily energy expenditure and also high apparent energy intake; this strategy was most evident in early winter when day lengths were shortest. By contrast, murres in warmer basin water employed a low-energy strategy, with less time flying and more time diving under low light conditions (nautical twilight and night). In warmer basin water, murres increased diving at night when the moon was more illuminated, likely taking advantage of diel vertically migrating prey. In warmer basin water, murres dove more at night and foraging efficiency increased under negative North Atlantic Oscillation (calmer ocean conditions). CONCLUSIONS: The proximity of two distinct marine habitats in this region allows individuals from a single species to use dual (low-energy/high-energy) strategies to overcome winter energy bottlenecks.

5.
Sci Total Environ ; 850: 157732, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35931163

RESUMEN

Species and populations with greater cognitive performance are more successful at adapting to changing habitats. Accordingly, urban species and populations often outperform their rural counterparts on problem-solving tests. Paradoxically, urban foraging also might be detrimental to the development and integrity of animals' brains because anthropogenic foods often lack essential nutrients such as the long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are important for cognitive performance in mammals and possibly birds. We tested whether urbanization or consumption of EPA and DHA are associated with problem-solving abilities in ring-billed gulls, a seabird that historically exploited marine environments rich in omega-3 fatty acids but now also thrives in urban centres. Using incubating adults nesting across a range of rural to urban colonies with equal access to the ocean, we tested whether urban gulls preferentially consumed anthropogenic food while rural nesters relied on marine organisms. As we expected individual variation in foraging habits within nesting location, we characterized each captured gulls' diet using stable isotope and fatty acid analyses of their red blood cells. To test their problem-solving abilities, we presented the sampled birds with a horizontal rendition of the string-pull test, a foraging puzzle often used in animal cognitive studies. The isotopic and fatty acid profiles of urban nesters indicated a diet comprising primarily anthropogenic food, whereas the profiles of rural nesters indicated a high reliance on marine organisms. Despite the gulls' degree of access to urban foraging habitat not predicting solving success, birds with biochemical profiles reflecting anthropogenic food (less DHA and a higher carbon-13 ratio in their red blood cells) had a greater probability of solving the string-pull test. These results suggest that experience foraging on anthropogenic food is the main explanatory factor leading to successful problem-solving, while regular consumption of omega-3s during incubation appears inconsequential.


Asunto(s)
Charadriiformes , Ácidos Docosahexaenoicos , Animales , Organismos Acuáticos , Aves , Ecosistema , Ácido Eicosapentaenoico , Mamíferos
6.
Chemosphere ; 304: 135279, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35691403

RESUMEN

Seabirds are important biovectors of contaminants, like mercury, moving them from marine to terrestrial environments around breeding colonies. This transfer of materials can have marked impacts on receiving environments and biota. Less is known about biotransport of contaminants by generalist seabirds that exploit anthropogenic wastes compared to other seabird species. In this study, we measured total mercury (THg) in O-horizon soils at four herring gull (Larus smithsoniansus) breeding colonies in southern Nova Scotia, Canada. At colonies with dry substrate, THg was significantly higher in soils collected from gull colonies compared to nearby reference soils with no nesting gulls. Further, THg was distinct in soils among study colonies and was likely influenced by biotransport from other nesting seabird species, most notably Leach's storm-petrels (Hydrobates leucorhous). Our research suggests gulls that scavenge on anthropogenic wastes at local industrial sites are biovectors moving THg acquired at these sites to their colonies and may increase the spatial footprint of contaminants from these industries.


Asunto(s)
Charadriiformes , Mercurio , Animales , Aves , Canadá , Monitoreo del Ambiente , Residuos Industriales , Mercurio/análisis , Nueva Escocia , Suelo
7.
Glob Chang Biol ; 28(14): 4292-4307, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35320599

RESUMEN

Seabird population size is intimately linked to the physical, chemical, and biological processes of the oceans. Yet, the overall effects of long-term changes in ocean dynamics on seabird colonies are difficult to quantify. Here, we used dated lake sediments to reconstruct ~10,000-years of seabird dynamics in the Northwest Atlantic to determine the influences of Holocene-scale climatic oscillations on colony size. On Baccalieu Island (Newfoundland and Labrador, Canada)-where the world's largest colony of Leach's storm-petrel (Hydrobates leucorhous Vieillot 1818) currently breeds-our data track seabird colony growth in response to warming during the Holocene Thermal Maximum (ca. 9000 to 6000 BP). From ca. 5200 BP to the onset of the Little Ice Age (ca. 550 BP), changes in colony size were correlated to variations in the North Atlantic Oscillation (NAO). By contrasting the seabird trends from Baccalieu Island to millennial-scale changes of storm-petrel populations from Grand Colombier Island (an island in the Northwest Atlantic that is subjected a to different ocean climate), we infer that changes in NAO influenced the ocean circulation, which translated into, among many things, changes in pycnocline depth across the Northwest Atlantic basin where the storm-petrels feed. We hypothesize that the depth of the pycnocline is likely a strong bottom-up control on surface-feeding storm-petrels through its influence on prey accessibility. Since the Little Ice Age (LIA), the effects of ocean dynamics on seabird colony size have been altered by anthropogenic impacts. Subsequently, the colony on Baccalieu Island grew at an unprecedented rate to become the world's largest resulting from favorable conditions linked to climate warming, increased vegetation (thereby nesting habitat), and attraction of recruits from other colonies that are now in decline. We show that although ocean dynamics were an important driver of seabird colony dynamics, its recent influence has been modified by human interference.


Asunto(s)
Aves , Ecosistema , Animales , Aves/fisiología , Canadá , Humanos , Lagos , Densidad de Población
8.
Mar Pollut Bull ; 173(Pt A): 112991, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34571381

RESUMEN

Ingestion of plastic pollution by pelagic seabirds is well-documented globally, but increasingly, researchers are investigating plastic ingestion in generalist predators and scavengers like gulls. We studied the gut contents of two sympatric gull species, American herring gulls (Larus smithsoniansus) and great black-backed gulls (L. marinus), collected year-round as part of "kill-to-scare" measures at the regional sanitary landfill in St. John's, Newfoundland and Labrador, Canada, to compare ingested anthropogenic debris, trophic position and diet breadth through the year. Although great black-backed gulls fed at a higher trophic level, frequency of occurrence of plastic ingestion was similar to American herring gulls, and varied little through the year. Diet breadth (isotopic niche size) was similar between species, but American herring gulls fed at a lower trophic level during winter, perhaps indicating a change in their reliance on anthropogenic food subsidies throughout their annual cycle.


Asunto(s)
Charadriiformes , Animales , Canadá , Ingestión de Alimentos , Monitoreo del Ambiente , Terranova y Labrador , Plásticos
9.
Mar Environ Res ; 166: 105268, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33626460

RESUMEN

Incidental mortality of marine birds in fisheries is an international conservation concern, including in Canada where globally significant populations of vulnerable diving species overlap with coastal gillnet fisheries. In British Columbia (BC), commercial salmon gillnet fishing effort was historically very high (>200,000 days fished annually in the early 1950's), and although this fishery has declined, over 6,400 days were fished annually in the 2006-2016 decade. Observations of seabird bycatch within the commercial fishery, however, are limited in both scope (comprising <2% of cumulative effort 2001-2016) and in time (being available only from 1995 onwards and only for a small number of areas). Using onboard fishery observer data from commercial, test and experimental fisheries (1995-2016), we developed two models to estimate the number of marine birds captured per set in sockeye (Oncorhynchus nerka) and chum (O. keta) salmon gillnet fisheries employing a Generalized Linear Mixed Modeling (GLMM) approach in a hierarchical Bayesian framework, with observer data post-stratified by fisheries management area and year. Using estimates of total commercial fishing effort (estimated number of sets, 2001-2016) we applied the models to extrapolate annual take for the main bird species (or groups) of interest. Multinomial probability estimates of species composition were calculated based upon a sample of 852 birds identified to species that were associated with sockeye or chum fisheries, enabling estimates (with CIs) of potential numbers of the mostly commonly observed species (common murres (Uria aalge), rhinoceros auklets (Cerorhinca monocerata), and marbled murrelets (Brachyramphus marmoratus)) entangled annually in commercial sockeye and chum salmon gillnet fisheries throughout BC. Conservative estimates of annual losses to entanglement were greatest for common murres (2,846, 95% CI: 2,628-3,047), followed by rhinoceros auklets (641, CI: 549-770) and marbled murrelets (228 CI: 156-346). Populations of all three of these alcids species are currently in decline in BC and entanglement mortality is a conservation concern. Gillnet mortality has been identified as a longstanding threat to marbled murrelet populations, which are recognized as Threatened in the Canada and the United States of America (USA). In addition, 622 (CI: 458-827) birds from 12 other species were estimated to be entangled annually. We conclude that cumulative mortality from incidental take in salmon gillnet fisheries is one of the largest sources of human-induced mortality for marine birds in BC waters, a conservation concern impacting both breeders and visiting migrants.


Asunto(s)
Explotaciones Pesqueras , Salmón , Animales , Teorema de Bayes , Aves , Colombia Británica , Conservación de los Recursos Naturales
10.
Viruses ; 13(2)2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525386

RESUMEN

Parvoviruses are small single-stranded DNA viruses that can infect both vertebrates and invertebrates. We report here the full characterization of novel viruses we identified in ducks, including two viral species within the subfamily Hamaparvovirinae (duck-associated chapparvovirus, DAC) and a novel species within the subfamily Densovirinae (duck-associated ambidensovirus, DAAD). Overall, 5.7% and 21.1% of the 123 screened ducks (American black ducks, mallards, northern pintail) were positive for DAC and DAAD, respectively, and both viruses were more frequently detected in autumn than in winter. Genome organization and predicted transcription profiles of DAC and DAAD were similar to viruses of the genera Chaphamaparvovirus and Protoambidensovirus, respectively. Their association to these genera was also demonstrated by subfamily-wide phylogenetic and distance analyses of non-structural protein NS1 sequences. While DACs were included in a highly supported clade of avian viruses, no definitive conclusions could be drawn about the host type of DAAD because it was phylogenetically close to viruses found in vertebrates and invertebrates and analyses of codon usage bias and nucleotide frequencies of viruses within the family Parvoviridae showed no clear host-based viral segregation. This study highlights the high parvoviral diversity in the avian reservoir with many avian-associated parvoviruses likely yet to be discovered.


Asunto(s)
Patos/virología , Infecciones por Parvoviridae/veterinaria , Parvoviridae/genética , Animales , Animales Salvajes/virología , Uso de Codones , ADN Viral/genética , Patos/clasificación , Genoma Viral/genética , Especificidad del Huésped , Parvoviridae/clasificación , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/virología , Filogenia , Estaciones del Año , Proteínas no Estructurales Virales/genética
11.
J Exp Biol ; 224(Pt 4)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33462136

RESUMEN

Consuming omega-3 fatty acids (n-3 LCPUFAs) during development improves cognition in mammals, but the effect remains untested in other taxa. In aquatic ecosystems, n-3 LCPUFAs are produced by phytoplankton and bioaccumulate in the food web. Alarmingly, the warming and acidification of aquatic systems caused by climate change impair n-3 LCPUFA production, with an anticipated decrease of 80% by the year 2100. We tested whether n-3 LCPUFA consumption affects the physiology, morphology, behaviour and cognition of the chicks of a top marine predator, the ring-billed gull. Using a colony with little access to n-3 LCPUFAs, we supplemented siblings from 22 fenced nests with contrasting treatments from hatching until fledging; one sibling received n-3 LCPUFA-rich fish oil and the other, a control sucrose solution without n-3 LCPUFAs. Halfway through the nestling period, half the chicks receiving fish oil were switched to the sucrose solution to test whether n-3 LCPUFA intake remains crucial past the main growth phase (chronic versus transient treatments). Upon fledging, n-3 LCPUFAs were elevated in the blood and brains of chicks receiving the chronic treatment, but were comparable to control levels among those receiving the transient treatment. Across the entire sample, chicks with elevated n-3 LCPUFAs in their tissues fledged earlier despite their morphology and activity levels being unrelated to fledging age. Fledging required chicks to escape fences encircling their nest. We therefore interpret fledging age as a possible indicator of cognition, with chicks with improved cognition fledging earlier. These results provide insight into whether declining dietary n-3 LCPUFAs will compromise top predators' problem-solving skills, and thus their ability to survive in a rapidly changing world.


Asunto(s)
Ecosistema , Ácidos Grasos Omega-3 , Animales , Cognición , Suplementos Dietéticos , Aceites de Pescado
12.
Sci Total Environ ; 750: 142201, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182207

RESUMEN

Mercury (Hg) is a natural trace element found in high concentrations in top predators, including Arctic seabirds. Most current knowledge about Hg concentrations in Arctic seabirds relates to exposure during the summer breeding period when researchers can easily access seabirds at colonies. However, the few studies focused on winter have shown higher Hg concentrations during the non-breeding period than breeding period in several tissues. Hence, improving knowledge about Hg exposure during the non-breeding period is crucial to understanding the threats and risks encountered by these species year-round. We used feathers of nine migratory alcid species occurring at high latitudes to study bird Hg exposure during both the breeding and non-breeding periods. Overall, Hg concentrations during the non-breeding period were ~3 times higher than during the breeding period. In addition, spatial differences were apparent within and between the Atlantic and Pacific regions. While Hg concentrations during the non-breeding period were ~9 times and ~3 times higher than during the breeding period for the West and East Atlantic respectively, Hg concentrations in the Pacific during the non-breeding period were only ~1.7 times higher than during the breeding period. In addition, individual Hg concentrations during the non-breeding period for most of the seabird colonies were above 5 µg g-1 dry weight (dw), which is considered to be the threshold at which deleterious effects are observed, suggesting that some breeding populations might be vulnerable to non-breeding Hg exposure. Since wintering area locations, and migration routes may influence seasonal Hg concentrations, it is crucial to improve our knowledge about spatial ecotoxicology to fully understand the risks associated with Hg contamination in Arctic seabirds.


Asunto(s)
Mercurio , Animales , Regiones Árticas , Aves , Monitoreo del Ambiente , Plumas/química , Mercurio/análisis , Estaciones del Año
13.
Front Public Health ; 8: 607997, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324604

RESUMEN

Performing microbiological assays on environmental samples in field settings poses logistical challenges with respect to the availability of suitable equipment or the ability to get samples to the laboratory in a timely fashion. For example, the viability of some bacteria can decrease greatly between sampling and arrival to the laboratory for processing. We developed and constructed rugged, reliable, and cost-effective portable incubators that were used by 10 independent field teams to perform microbiological assays on surface water samples from lakes across Canada. Rigorous testing and validation of our incubators ensured that incubation conditions were consistent within and across all 10 field teams and 2 sampling years. Samples from all sites were processed in duplicate and bacterial counts were highly repeatable within and across sampling teams. Bacterial counts were also found to be statistically equivalent to counts obtained with standard laboratory techniques using a conventional incubator. Using this method, thermotolerant coliforms (TTCs) and Escherichia coli were quantified from 432 lakes, allowing comparison to both historical datasets that relied on TTCs and those following current guidelines that use E. coli counts. We found higher loads at the shoreline than the middle of lakes and different patterns between ecozones. E. coli was not frequently detected, but many lakes exceeded Canadian guideline values for activities such as swimming and some even exceeded the guideline value for secondary recreational activities such as boating. To the best of our knowledge, this is the largest bacteriological water quality assessment of freshwater lakes to date in terms of both spatial scale and the number of lakes sampled. Our incubator design can be easily adapted for a wide variety of researcher goals and represents a robust platform for field studies and other applications, including those in remote or low-resources settings.


Asunto(s)
Bacterias , Escherichia coli , Canadá , Incubadoras , Microbiología del Agua
14.
Proc Natl Acad Sci U S A ; 117(51): 32484-32492, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288699

RESUMEN

Recent estimates indicate that ∼70% of the world's seabird populations have declined since the 1950s due to human activities. However, for almost all bird populations, there is insufficient long-term monitoring to understand baseline (i.e., preindustrial) conditions, which are required to distinguish natural versus anthropogenically driven changes. Here, we address this lack of long-term monitoring data with multiproxy paleolimnological approaches to examine the long-term population dynamics of a major colony of Leach's Storm-petrel (Hydrobates leucorhous) on Grand Colombier Island in the St. Pierre and Miquelon archipelago-an overseas French territory in the northwest Atlantic Ocean. By reconstructing the last ∼5,800 y of storm-petrel dynamics, we demonstrate that this colony underwent substantial natural fluctuations until the start of the 19th century, when population cycles were disrupted, coinciding with the establishment and expansion of a European settlement. Our paleoenvironmental data, coupled with on-the-ground population surveys, indicate that the current colony is only ∼16% of the potential carrying capacity, reinforcing concerning trends of globally declining seabird populations. As seabirds are sentinel species of marine ecosystem health, such declines provide a call to action for global conservation. In response, we emphasize the need for enlarged protected areas and the rehabilitation of disturbed islands to protect ecologically critical seabird populations. Furthermore, long-term data, such as those provided by paleoecological approaches, are required to better understand shifting baselines in conservation to truly recognize current rates of ecological loss.


Asunto(s)
Aves , Sedimentos Geológicos/análisis , Animales , Océano Atlántico , Isótopos de Carbono/análisis , Conservación de los Recursos Naturales , Diatomeas , Ecosistema , Monitoreo del Ambiente , Eutrofización , Francia , Sistemas de Información Geográfica , Humanos , Helicasa Inducida por Interferón IFIH1/análisis , Islas , Isótopos de Nitrógeno/análisis , Estanques , Dinámica Poblacional , Zinc/análisis
15.
Proc Biol Sci ; 287(1934): 20201680, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32901574

RESUMEN

In this investigation, we used a combination of field- and laboratory-based approaches to assess if influenza A viruses (IAVs) shed by ducks could remain viable for extended periods in surface water within three wetland complexes of North America. In a field experiment, replicate filtered surface water samples inoculated with duck swabs were tested for IAVs upon collection and again after an overwintering period of approximately 6-7 months. Numerous IAVs were molecularly detected and isolated from these samples, including replicates maintained at wetland field sites in Alaska and Minnesota for 181-229 days. In a parallel laboratory experiment, we attempted to culture IAVs from filtered surface water samples inoculated with duck swabs from Minnesota each month during September 2018-April 2019 and found monthly declines in viral viability. In an experimental challenge study, we found that IAVs maintained in filtered surface water within wetlands of Alaska and Minnesota for 214 and 226 days, respectively, were infectious in a mallard model. Collectively, our results support surface waters of northern wetlands as a biologically important medium in which IAVs may be both transmitted and maintained, potentially serving as an environmental reservoir for infectious IAVs during the overwintering period of migratory birds.


Asunto(s)
Patos/virología , Virus de la Influenza A , Gripe Aviar/virología , Humedales , Animales , América del Norte
16.
Mov Ecol ; 8: 26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32549986

RESUMEN

BACKGROUND: Recent studies have proposed that birds migrating short distances migrate at an overall slower pace, minimizing energy expenditure, while birds migrating long distances minimize time spent on migration to cope with seasonal changes in environmental conditions. METHODS: We evaluated variability in the migration strategies of Herring Gulls (Larus argentatus), a generalist species with flexible foraging and flight behaviour. We tracked one population of long distance migrants and three populations of short distance migrants, and compared the directness of their migration routes, their overall migration speed, their travel speed, and their use of stopovers. RESULTS: Our research revealed that Herring Gulls breeding in the eastern Arctic migrate long distances to spend the winter in the Gulf of Mexico, traveling more than four times farther than gulls from Atlantic Canada during autumn migration. While all populations used indirect routes, the long distance migrants were the least direct. We found that regardless of the distance the population traveled, Herring Gulls migrated at a slower overall migration speed than predicted by Optimal Migration Theory, but the long distance migrants had higher speeds on travel days. While long distance migrants used more stopover days overall, relative to the distance travelled all four populations used a similar number of stopover days. CONCLUSIONS: When taken in context with other studies, we expect that the migration strategies of flexible generalist species like Herring Gulls may be more influenced by habitat and food resources than migration distance.

17.
PLoS One ; 15(5): e0232822, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32392233

RESUMEN

Populations often show complex spatial and temporal dynamics, creating challenges in designing and implementing effective surveys. Inappropriate sampling designs can potentially lead to both under-sampling (reducing precision) and over-sampling (through the extensive and potentially expensive sampling of correlated metrics). These issues can be difficult to identify and avoid in sample surveys of fish populations as they tend to be costly and comprised of multiple levels of sampling. Population estimates are therefore affected by each level of sampling as well as the pathway taken to analyze such data. Though simulations are a useful tool for exploring the efficacy of specific sampling strategies and statistical methods, there are a limited number of tools that facilitate the simulation testing of a range of sampling and analytical pathways for multi-stage survey data. Here we introduce the R package SimSurvey, which has been designed to simplify the process of simulating surveys of age-structured and spatially-distributed populations. The package allows the user to simulate age-structured populations that vary in space and time and explore the efficacy of a range of built-in or user-defined sampling protocols to reproduce the population parameters of the known population. SimSurvey also includes a function for estimating the stratified mean and variance of the population from the simulated survey data. We demonstrate the use of this package using a case study and show that it can reveal unexpected sources of bias and be used to explore design-based solutions to such problems. In summary, SimSurvey can serve as a convenient, accessible and flexible platform for simulating a wide range of sampling strategies for fish stocks and other populations that show complex structuring. Various statistical approaches can then be applied to the results to test the efficacy of different analytical approaches.


Asunto(s)
Biometría/métodos , Modelos Estadísticos , Población , Animales , Sesgo , Simulación por Computador , Interpretación Estadística de Datos , Humanos , Encuestas y Cuestionarios
18.
Proc Biol Sci ; 287(1919): 20192234, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31964297

RESUMEN

Many animal populations are under stress and declining. For numerous marine bird species, only recent or sparse monitoring data are available, lacking the appropriate temporal perspective needed to consider natural, long-term population dynamics when developing conservation strategies. Here, we use a combination of established palaeoenvironmental approaches to examine the centennial-scale dynamics of the world's largest colony (representing approx. 50% of the global population) of the declining and vulnerable Leach's Storm-petrel (Hydrobates leucorhous). By reconstructing the last approximately 1700 years of the colony's population trends, we corroborate recent surveys indicating rapid declines since the 1980s. More surprisingly, however, was that the colony size was smaller and has changed strikingly in the past, even prior to the introduction of human stressors. Our results challenge notions that very large colonies are generally stable in the absence of anthropogenic pressures and speak to an increasingly pressing need to better understand inter-colony movement and recruitment when inferring range- and species-wide trends. While the recently documented decline in storm-petrels clearly warrants conservation concern, we show that colony size was consistently much lower in the past and changed markedly in the absence of major anthropogenic activity. In response, we emphasize the need for enlarged protected area networks to maintain natural population cycles, coupled with continued research to identify the driver(s) of the current global seabird decline.


Asunto(s)
Aves , Animales , Especies en Peligro de Extinción , Densidad de Población , Dinámica Poblacional
19.
Viruses ; 11(9)2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438486

RESUMEN

Wild birds are recognized viral reservoirs but our understanding about avian viral diversity is limited. We describe here three novel RNA viruses that we identified in oropharyngeal/cloacal swabs collected from wild birds. The complete genome of a novel gull metapneumovirus (GuMPV B29) was determined. Phylogenetic analyses indicated that this virus could represent a novel avian metapneumovirus (AMPV) sub-group, intermediate between AMPV-C and the subgroup of the other AMPVs. This virus was detected in an American herring (1/24, 4.2%) and great black-backed (4/26, 15.4%) gulls. A novel gull coronavirus (GuCoV B29) was detected in great black-backed (3/26, 11.5%) and American herring (2/24, 8.3%) gulls. Phylogenetic analyses of GuCoV B29 suggested that this virus could represent a novel species within the genus Gammacoronavirus, close to other recently identified potential novel avian coronaviral species. One GuMPV-GuCoV co-infection was detected. A novel duck calicivirus (DuCV-2 B6) was identified in mallards (2/5, 40%) and American black ducks (7/26, 26.9%). This virus, of which we identified two different types, was fully sequenced and was genetically closest to other caliciviruses identified in Anatidae, but more distant to other caliciviruses from birds in the genus Anas. These discoveries increase our knowledge about avian virus diversity and host distributions.


Asunto(s)
Aves/virología , Gammacoronavirus , Metapneumovirus , Animales , Animales Salvajes/virología , Charadriiformes/virología , Coinfección/virología , Infecciones por Coronavirus , Patos/virología , Gammacoronavirus/clasificación , Gammacoronavirus/genética , Gammacoronavirus/aislamiento & purificación , Genoma Viral , Gripe Aviar/virología , Metapneumovirus/clasificación , Metapneumovirus/genética , Metapneumovirus/aislamiento & purificación , Filogenia , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Estados Unidos/epidemiología
20.
Glob Chang Biol ; 25(12): 4081-4091, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31368188

RESUMEN

The timing of annual events such as reproduction is a critical component of how free-living organisms respond to ongoing climate change. This may be especially true in the Arctic, which is disproportionally impacted by climate warming. Here, we show that Arctic seabirds responded to climate change by moving the start of their reproduction earlier, coincident with an advancing onset of spring and that their response is phylogenetically and spatially structured. The phylogenetic signal is likely driven by seabird foraging behavior. Surface-feeding species advanced their reproduction in the last 35 years while diving species showed remarkably stable breeding timing. The earlier reproduction for Arctic surface-feeding birds was significant in the Pacific only, where spring advancement was most pronounced. In both the Atlantic and Pacific, seabirds with a long breeding season showed a greater response to the advancement of spring than seabirds with a short breeding season. Our results emphasize that spatial variation, phylogeny, and life history are important considerations in seabird phenological response to climate change and highlight the key role played by the species' foraging behavior.


Asunto(s)
Migración Animal , Aves , Animales , Regiones Árticas , Cambio Climático , Filogenia , Reproducción , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...