Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 132(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35439173

RESUMEN

CD13, an ectoenzyme on myeloid and stromal cells, also circulates as a shed, soluble protein (sCD13) with powerful chemoattractant, angiogenic, and arthritogenic properties, which require engagement of a G protein-coupled receptor (GPCR). Here we identify the GPCR that mediates sCD13 arthritogenic actions as the bradykinin receptor B1 (B1R). Immunofluorescence and immunoblotting verified high expression of B1R in rheumatoid arthritis (RA) synovial tissue and fibroblast-like synoviocytes (FLSs), and demonstrated binding of sCD13 to B1R. Chemotaxis, and phosphorylation of Erk1/2, induced by sCD13, were inhibited by B1R antagonists. In ex vivo RA synovial tissue organ cultures, a B1R antagonist reduced secretion of inflammatory cytokines. Several mouse arthritis models, including serum transfer, antigen-induced, and local innate immune stimulation arthritis models, were attenuated in Cd13-/- and B1R-/- mice and were alleviated by B1R antagonism. These results establish a CD13/B1R axis in the pathogenesis of inflammatory arthritis and identify B1R as a compelling therapeutic target in RA and potentially other inflammatory diseases.


Asunto(s)
Artritis Reumatoide , Antígenos CD13/metabolismo , Sinoviocitos , Animales , Artritis Reumatoide/patología , Bradiquinina/metabolismo , Bradiquinina/farmacología , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Ratones , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Membrana Sinovial/patología , Sinoviocitos/metabolismo
2.
Cancer Res Commun ; 2(12): 1727-1737, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36970721

RESUMEN

The reciprocal relationship between malignant T cells and lymphoma-associated macrophages (LAM) within the tumor microenvironment (TME) is unique, as LAMs are well poised to provide ligands for antigen, costimulatory, and cytokine receptors that promote T-cell lymphoma growth. Conversely, malignant T cells promote the functional polarization and homeostatic survival of LAM. Therefore, we sought to determine the extent to which LAMs are a therapeutic vulnerability in these lymphomas, and to identify effective therapeutic strategies for their depletion. We utilized complementary genetically engineered mouse models and primary peripheral T-cell lymphoma (PTCL) specimens to quantify LAM expansion and proliferation. A high-throughput screen was performed to identify targeted agents that effectively deplete LAM within the context of PTCL. We observed that LAMs are dominant constituents of the TME in PTCL. Furthermore, their dominance was explained, at least in part, by their proliferation and expansion in response to PTCL-derived cytokines. Importantly, LAMs are a true dependency in these lymphomas, as their depletion significantly impaired PTCL progression. These findings were extrapolated to a large cohort of human PTCL specimens where LAM proliferation was observed. A high-throughput screen demonstrated that PTCL-derived cytokines led to relative resistance to CSF1R selective inhibitors, and culminated in the identification of dual CSF1R/JAK inhibition as a novel therapeutic strategy to deplete LAM in these aggressive lymphomas. Malignant T cells promote the expansion and proliferation of LAM, which are a bone fide dependency in these lymphomas, and are effectively depleted with a dual CSF1R/JAK inhibitor. Significance: LAMs are a therapeutic vulnerability, as their depletion impairs T-cell lymphoma disease progression. Pacritinib, a dual CSF1R/JAK inhibitor, effectively impaired LAM viability and expansion, prolonged survival in preclinical T-cell lymphoma models, and is currently being investigated as a novel therapeutic approach in these lymphomas.


Asunto(s)
Inhibidores de las Cinasas Janus , Linfoma de Células T Periférico , Linfoma de Células T , Animales , Ratones , Humanos , Linfoma de Células T Periférico/tratamiento farmacológico , Inhibidores de las Cinasas Janus/farmacología , Citocinas/farmacología , Linfoma de Células T/tratamiento farmacológico , Macrófagos , Microambiente Tumoral
3.
Lupus Sci Med ; 3(1): e000147, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27099767

RESUMEN

OBJECTIVES: Antigen-specific CD4(+) T cells epigenetically modified with DNA methylation inhibitors overexpress genes normally suppressed by this mechanism, including CD11a, CD70, CD40L and the KIR gene family. The altered cells become autoreactive, losing restriction for nominal antigen and responding to self-class II major histocompatibility complex (MHC) molecules without added antigen, and are sufficient to cause a lupus-like disease in syngeneic mice. T cells overexpressing the same genes are found in patients with active lupus. Whether these genes are co-overexpressed on the same or different cells is unknown. The goal of this study was to determine whether these genes are overexpressed on the same or different T cells and whether this subset of CD4(+) T cells is also present in patients with lupus and other rheumatic diseases. METHODS: Multicolour flow cytometry was used to compare CD11a, CD70, CD40L and KIR expression on CD3(+)CD4(+)CD28(+) T cells to their expression on experimentally demethylated CD3(+)CD4(+)CD28(+) T cells and CD3(+)CD4(+)CD28(+) T cells from patients with active lupus and other autoimmune diseases. RESULTS: Experimentally demethylated CD4(+) T cells and T cells from patients with active lupus have a CD3(+)CD4(+)CD28(+)CD11a(hi)CD70(+)CD40L(hi)KIR(+) subset, and the subset size is proportional to lupus flare severity. A similar subset is found in patients with other rheumatic diseases including rheumatoid arthritis, systemic sclerosis and Sjögren's syndrome but not retroperitoneal fibrosis. CONCLUSIONS: Patients with active autoimmune rheumatic diseases have a previously undescribed CD3(+)CD4(+)CD28(+)CD11a(hi)CD70(+)CD40L(hi)KIR(+) T cell subset. This subset may play an important role in flares of lupus and related autoimmune rheumatic diseases, provide a biomarker for disease activity and serve as a novel therapeutic target for the treatment of lupus flares.

4.
J Mol Biol ; 394(3): 391-409, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19733184

RESUMEN

Bimolecular fluorescence complementation (BiFC) analysis enables visualization of the subcellular locations of protein interactions in living cells. Using fragments of different fluorescent proteins, we investigated the temporal resolution and the quantitative accuracy of BiFC analysis. We determined the kinetics of BiFC complex formation in response to the rapamycin-inducible interaction between the FK506 binding protein (FKBP) and the FKBP-rapamycin binding domain (FRB). Fragments of yellow fluorescent protein fused to FKBP and FRB produced detectable BiFC complex fluorescence 10 min after the addition of rapamycin and a 10-fold increase in the mean fluorescence intensity in 8 h. The N-terminal fragment of the Venus fluorescent protein fused to FKBP produced constitutive BiFC complexes with several C-terminal fragments fused to FRB. A chimeric N-terminal fragment containing residues from Venus and yellow fluorescent protein produced either constitutive or inducible BiFC complexes depending on the temperature at which the cells were cultured. The concentrations of inducers required for half-maximal induction of BiFC complex formation by all fluorescent protein fragments tested were consistent with the affinities of the inducers for unmodified FKBP and FRB. Treatment with the FK506 inhibitor of FKBP-FRB interaction prevented the formation of BiFC complexes by FKBP and FRB fusions, but did not disrupt existing BiFC complexes. Proteins synthesized before the addition of rapamycin formed BiFC complexes with the same efficiency as did newly synthesized proteins. Inhibitors of protein synthesis attenuated BiFC complex formation independent of their effects on fusion protein synthesis. The kinetics at which they inhibited BiFC complex formation suggests that they prevented association of the fluorescent protein fragments, but not the slow maturation of BiFC complex fluorescence. Agents that induce the unfolded protein response also reduced formation of BiFC complexes. The effects of these agents were suppressed by cellular adaptation to protein folding stress. In summary, BiFC analysis enables detection of protein interactions within minutes after complex formation in living cells, but does not allow detection of complex dissociation. Conditional BiFC complex formation depends on the folding efficiencies of fluorescent protein fragments and can be affected by the cellular protein folding environment.


Asunto(s)
Proteínas Luminiscentes/química , Animales , Células COS , Chlorocebus aethiops , Cicloheximida , Citometría de Flujo , Técnicas In Vitro , Cinética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Complejos Multiproteicos/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Pliegue de Proteína/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Tacrolimus/farmacología , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo
5.
FEBS Lett ; 555(2): 236-42, 2003 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-14644421

RESUMEN

Cytochrome p450 (CYP) 4Fs metabolize leukotriene B(4) and other inflammatory mediators in the arachidonic acid cascade. Here we show that lipopolysaccharide (LPS) treatment suppresses CYP4F4 and up-regulates CYP4F5 mRNA expression in rat liver whereas renal CYP4Fs are essentially unchanged. BaSO(4) treatment, in contrast, increases both hepatic and renal CYP4F expression levels. Thus, distinct regulatory mechanisms in CYP4F expression might operate under different inflammatory prompts. To examine hepatic totipotency, primary hepatocytes were treated with varying doses of LPS resulting in decrease in all the CYP4F isoforms. Treatment of hepatocytes with 5 ng/ml of interleukin-1beta mimics the in vivo effects of LPS on CYP4F expression.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Riñón/enzimología , Lipopolisacáridos/farmacología , Microsomas Hepáticos/enzimología , Oxigenasas de Función Mixta/metabolismo , Animales , Sulfato de Bario/farmacología , Sistema Enzimático del Citocromo P-450/biosíntesis , Familia 4 del Citocromo P450 , Regulación Enzimológica de la Expresión Génica , Hepatocitos/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Interleucina-1/farmacología , Isoenzimas , Masculino , Oxigenasas de Función Mixta/biosíntesis , Reacción en Cadena de la Polimerasa/métodos , Ratas , Ratas Endogámicas F344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...