Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38741934

RESUMEN

Antimicrobial resistance (AMR) in microorganisms is an ongoing threat to human health across the globe. To better characterize the AMR profiles of six strains of Staphylococcus aureus , we performed a secondary analysis that consisted of the following steps: 1) download fastq files from the Sequence Read Archive, 2) perform a de novo genome assembly from the sequencing reads, 3) annotate the assembled contigs, 4) predict the presence of antimicrobial resistance genes. We predicted the presence of 75 unique genes that conferred resistance against 22 unique antimicrobial compounds.

2.
Microorganisms ; 11(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37630453

RESUMEN

Viral infection of farmed fish and shellfish represents a major issue within the aquaculture industry. One potential control strategy involves RNA interference of viral gene expression through the oral delivery of specific double-stranded RNA (dsRNA). In previous work, we have shown that recombinant dsRNA can be produced in the chloroplast of the edible microalga Chlamydomonas reinhardtii and used to control disease in shrimp. Here, we report a significant improvement in antiviral dsRNA production and its use to protect shrimp against white spot syndrome virus (WSSV). A new strategy for dsRNA synthesis was developed that uses two convergent copies of the endogenous rrnS promoter to drive high-level transcription of both strands of the WSSV gene element in the chloroplast. Quantitative RT-PCR indicated that ~119 ng dsRNA was produced per liter of culture of the transgenic microalga. This represents an ~10-fold increase in dsRNA relative to our previous report. The engineered alga was assessed for its ability to prevent WSSV infection when fed to shrimp larvae prior to a challenge with the virus. The survival of shrimp given feed supplemented with dried alga containing the dsRNA was significantly enhanced (~69% survival) relative to a negative control (<10% survival). The findings suggest that this new dsRNA production platform could be employed as a low-cost, low-tech control method for aquaculture.

3.
Microbiologyopen ; 12(2): e1350, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37186227

RESUMEN

High-value heterologous proteins produced in Escherichia coli that contain disulfide bonds are almost invariably targeted to the periplasm via the Sec pathway as it, among other advantages, enables disulfide bond formation and simplifies downstream processing. However, the Sec system cannot transport complex or rapidly folding proteins, as it only transports proteins in an unfolded state. The Tat system also transports proteins to the periplasm, and it has significant potential as an alternative means of recombinant protein production because it transports fully folded proteins. Most of the studies related to Tat secretion have used the well-studied TorA signal peptide that is Tat-specific, but this signal peptide also tends to induce degradation of the protein of interest, resulting in lower yields. This makes it difficult to use Tat in the industry. In this study, we show that a model disulfide bond-containing protein, YebF, can be exported to the periplasm and media at a very high level by the Tat pathway in a manner almost completely dependent on cytoplasmic disulfide formation, by other two putative Tat SPs: those of MdoD and AmiC. In contrast, the TorA SP exports YebF at a low level.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Periplasma , Proteínas Recombinantes , Sistema de Translocación de Arginina Gemela , Transporte de Proteínas , Periplasma/metabolismo , Disulfuros/química , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Pliegue de Proteína , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Señales de Clasificación de Proteína , Sistema de Translocación de Arginina Gemela/metabolismo , Medios de Cultivo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
4.
Microb Cell Fact ; 22(1): 104, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208750

RESUMEN

INTRODUCTION: In the biopharmaceutical industry, Escherichia coli is one of the preferred expression hosts for large-scale production of therapeutic proteins. Although increasing the product yield is important, product quality is a major factor in this industry because greatest productivity does not always correspond with the highest quality of the produced protein. While some post-translational modifications, such as disulphide bonds, are required to achieve the biologically active conformation, others may have a negative impact on the product's activity, effectiveness, and/or safety. Therefore, they are classified as product associated impurities, and they represent a crucial quality parameter for regulatory authorities. RESULTS: In this study, fermentation conditions of two widely employed industrial E. coli strains, BL21 and W3110 are compared for recombinant protein production of a single-chain variable fragment (scFv) in an industrial setting. We found that the BL21 strain produces more soluble scFv than the W3110 strain, even though W3110 produces more recombinant protein in total. A quality assessment on the scFv recovered from the supernatant was then performed. Unexpectedly, even when our scFv is correctly disulphide bonded and cleaved from its signal peptide in both strains, the protein shows charge heterogeneity with up to seven distinguishable variants on cation exchange chromatography. Biophysical characterization confirmed the presence of altered conformations of the two main charged variants. CONCLUSIONS: The findings indicated that BL21 is more productive for this specific scFv than W3110. When assessing product quality, a distinctive profile of the protein was found which was independent of the E. coli strain. This suggests that alterations are present in the recovered product although the exact nature of them could not be determined. This similarity between the two strains' generated products also serves as a sign of their interchangeability. This study encourages the development of innovative, fast, and inexpensive techniques for the detection of heterogeneity while also provoking a debate about whether intact mass spectrometry-based analysis of the protein of interest is sufficient to detect heterogeneity in a product.


Asunto(s)
Proteínas de Escherichia coli , Anticuerpos de Cadena Única , Escherichia coli/metabolismo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo , Proteínas Recombinantes , Proteínas de Escherichia coli/metabolismo , Disulfuros/metabolismo
5.
Biology (Basel) ; 12(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36671801

RESUMEN

Because of climate change, the McMurdo Dry Valleys of Antarctica (MCM) have experienced an increase in the frequency and magnitude of summer pulse warming and surface ice and snow melting events. In response to these environmental changes, some nematode species in the MCM have experienced steady population declines over the last three decades, but Plectus murrayi, a mesophilic nematode species, has responded with a steady increase in range and abundance. To determine how P. murrayi responds to increasing temperatures, we measured metabolic heat and CO2 production rates and calculated O2 consumption rates as a function of temperature at 5 °C intervals from 5 to 50 °C. Heat, CO2 production, and O2 consumption rates increase approximately exponentially up to 40 °C, a temperature never experienced in their polar habitat. Metabolic rates decline rapidly above 40 °C and are irreversibly lost at 50 °C due to thermal stress and mortality. Caenorhabditis elegans, a much more widespread nematode that is found in more temperate environments reaches peak metabolic heat rate at just 27 °C, above which it experiences high mortality due to thermal stress. At temperatures from 10 to 40 °C, P. murrayi produces about 6 times more CO2 than the O2 it consumes, a respiratory quotient indicative of either acetogenesis or de novo lipogenesis. No potential acetogenic microbes were identified in the P. murrayi microbiome, suggesting that P. murrayi is producing increased CO2 as a byproduct of de novo lipogenesis. This phenomenon, in conjunction with increased summer temperatures in their polar habitat, will likely lead to increased demand for carbon and subsequent increases in CO2 production, population abundance, and range expansion. If such changes are not concomitant with increased carbon inputs, we predict the MCM soil ecosystems will experience dramatic declines in functional and taxonomic diversity.

6.
Structure ; 30(8): 1050-1054.e2, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35609600

RESUMEN

During RNA replication, coronaviruses require proofreading to maintain the integrity of their large genomes. Nsp14 associates with viral polymerase complex to excise the mismatched nucleotides. Aside from the exonuclease activity, nsp14 methyltransferase domain mediates cap methylation, facilitating translation initiation and protecting viral RNA from recognition by the innate immune sensors. The nsp14 exonuclease activity is modulated by a protein co-factor nsp10. While the nsp10/nsp14 complex structure is available, the mechanistic basis for nsp10-mediated modulation remains unclear in the absence of the nsp14 structure. Here, we provide a crystal structure of nsp14 in an apo-form. Comparative analysis of the apo- and nsp10-bound structures explain the modulatory role of the co-factor protein and reveal the allosteric nsp14 control mechanism essential for drug discovery. Further, the flexibility of the N-terminal lid of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp14 structure presented in this study rationalizes the recently proposed idea of nsp14/nsp10/nsp16 ternary complex.


Asunto(s)
Exorribonucleasas , Proteínas no Estructurales Virales , Proteínas Reguladoras y Accesorias Virales , Exonucleasas , Exorribonucleasas/química , Metiltransferasas/química , Pliegue de Proteína , ARN Viral/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/química , Proteínas Reguladoras y Accesorias Virales/química
7.
Mol Biotechnol ; 64(11): 1288-1302, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35593985

RESUMEN

Multiple yeast strains have been developed into versatile heterologous protein expression platforms. Earlier works showed that Ogataea thermomethanolica TBRC 656 (OT), a thermotolerant methylotrophic yeast, can efficiently produce several industrial enzymes. In this work, we demonstrated the potential of this platform for biopharmaceutical manufacturing. Using a swine vaccine candidate as a model, we showed that OT can be optimized to express and secrete the antigen based on porcine circovirus type 2d capsid protein at a respectable yield. Crucial steps for yield improvement include codon optimization and reduction of OT protease activities. The antigen produced in this system could be purified efficiently and induce robust antibody response in test animals. Improvements in this platform, especially more efficient secretion and reduced extracellular proteases, would extend its potential as a competitive platform for biopharmaceutical industries.


Asunto(s)
Productos Biológicos , Circovirus , Saccharomycetales , Animales , Productos Biológicos/metabolismo , Proteínas de la Cápside/metabolismo , Péptido Hidrolasas/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Porcinos
8.
Biotechnol Bioeng ; 119(6): 1614-1623, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35211956

RESUMEN

Most Escherichia coli overexpression vectors used for recombinant protein production (RPP) depend on organic inducers, for example, sugars or simple conjugates. However, these can be expensive and, sometimes, chemically unstable. To simplify this and to cut the cost of RPP, we have developed vectors controlled by the Escherichia coli nitrate-responsive NarL transcription activator protein, which use nitrate, a cheap, stable, and abundant inorganic ion, to induce high-level controlled RPP. We show that target proteins, such as green fluorescent protein, human growth hormone, and single-chain variable region antibody fragments can be expressed to high levels using our promoter systems. As nitrate levels are high in many commercial fertilizers, we demonstrate that controlled RPP can be achieved using readily available and inexpensive garden products.


Asunto(s)
Proteínas de Escherichia coli , Secuencia de Bases , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Nitratos/metabolismo , Operón , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
9.
Molecules ; 27(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35164317

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure-activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Compuestos Heterocíclicos/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Ensayos Analíticos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Células Vero
10.
ACS Med Chem Lett ; 11(11): 2227-2231, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33214833

RESUMEN

Protein arginine methyltransferase 5 (PRMT5) is an enzyme that can symmetrically dimethylate arginine residues in histones and nonhistone proteins by using S-adenosyl methionine (SAM) as the methyl donating cofactor. We have designed a library of SAM analogues and discovered potent, cell-active, and selective spiro diamines as inhibitors of the enzymatic function of PRMT5. Crystallographic studies confirmed a very interesting binding mode, involving protein flexibility, where both the cofactor pocket and part of substrate binding site are occupied by these inhibitors.

11.
Protein J ; 38(4): 377-388, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31401776

RESUMEN

The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Transporte de Proteínas/fisiología , Sistema de Translocación de Arginina Gemela , Arginina/fisiología , Bacillus subtilis , Membrana Celular/metabolismo , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/fisiología , Pliegue de Proteína , Señales de Clasificación de Proteína/fisiología , Canales de Translocación SEC/química , Canales de Translocación SEC/fisiología , Sistema de Translocación de Arginina Gemela/química , Sistema de Translocación de Arginina Gemela/fisiología
12.
Biotechnol Bioeng ; 116(12): 3282-3291, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31429928

RESUMEN

Escherichia coli is a heavily used platform for the production of biotherapeutic and other high-value proteins, and a favored strategy is to export the protein of interest to the periplasm to simplify downstream processing and facilitate disulfide bond formation. The Sec pathway is the standard means of transporting the target protein but it is unable to transport complex or rapidly folding proteins because the Sec system can only transport proteins in an unfolded state. The Tat system also operates to transport proteins to the periplasm, and it has significant potential as an alternative means of recombinant protein production because it transports fully folded proteins. Here, we have tested the Tat system's full potential for the production of biotherapeutics for the first time using fed-batch fermentation. We expressed human growth hormone (hGH) with a Tat signal peptide in E. coli W3110 "TatExpress" strains that contain elevated levels of the Tat apparatus. This construct contained four amino acids from TorA at the hGH N-terminus as well as the initiation methionine from hGH, which is removed in vivo. We show that the protein is efficiently exported to the periplasm during extended fed-batch fermentation, to the extent that it is by far the most abundant protein in the periplasm. The protein was shown to be homogeneous, disulfide bonded, and active. The bioassay showed that the yields of purified periplasmic hGH are 5.4 g/L culture whereas an enzyme-linked immunosorbent assay gave a figure of 2.39 g/L. Separate analysis of a TorA signal peptide linked to hGH construct lacking any additional amino acids likewise showed efficient export to the periplasm, although yields were approximately two-fold lower.


Asunto(s)
Escherichia coli/metabolismo , Hormona de Crecimiento Humana/biosíntesis , Periplasma/metabolismo , Pliegue de Proteína , Señales de Clasificación de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Escherichia coli/genética , Hormona de Crecimiento Humana/genética , Humanos , Periplasma/genética , Proteínas Recombinantes de Fusión/genética
13.
EcoSal Plus ; 8(2)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31215506

RESUMEN

The Tat pathway for protein translocation across bacterial membranes stands out for its selective handling of fully folded cargo proteins. In this review, we provide a comprehensive summary of our current understanding of the different known Tat components, their assembly into different complexes, and their specific roles in the protein translocation process. In particular, this overview focuses on the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Bacillus subtilis. Using these organisms as examples, we discuss structural features of Tat complexes alongside mechanistic models that allow for the Tat pathway's unique protein proofreading and transport capabilities. Finally, we highlight recent advances in exploiting the Tat pathway for biotechnological benefit, the production of high-value pharmaceutical proteins.


Asunto(s)
Arginina/metabolismo , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Productos del Gen tat/metabolismo , Transporte de Proteínas , Bacillus subtilis/genética , Escherichia coli/genética , Productos del Gen tat/genética , Redes y Vías Metabólicas , Señales de Clasificación de Proteína
14.
Biochem Soc Trans ; 47(2): 755-763, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30971435

RESUMEN

The Escherichia coli lac operon promoter is widely used as a tool to control recombinant protein production in bacteria. Here, we give a brief review of how it functions, how it is regulated, and how, based on this knowledge, a suite of lac promoter derivatives has been developed to give a controlled expression that is suitable for diverse biotechnology applications.


Asunto(s)
Escherichia coli/metabolismo , Operón Lac/genética , Regiones Promotoras Genéticas/genética , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética/genética
15.
Bioorg Med Chem Lett ; 29(12): 1522-1531, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30981576

RESUMEN

Disruption of interleukin-13 (IL-13) signaling with large molecule antibody therapies has shown promise in diseases of allergic inflammation. Given that IL-13 recruits several members of the Janus Kinase family (JAK1, JAK2, and TYK2) to its receptor complex, JAK inhibition may offer an alternate small molecule approach to disrupting IL-13 signaling. Herein we demonstrate that JAK1 is likely the isoform most important to IL-13 signaling. Structure-based design was then used to improve the JAK1 potency of a series of previously reported JAK2 inhibitors. The ability to impede IL-13 signaling was thereby significantly improved, with the best compounds exhibiting single digit nM IC50's in cell-based assays dependent upon IL-13 signaling. Appropriate substitution was further found to influence inhibition of a key off-target, LRRK2. Finally, the most potent compounds were found to be metabolically labile, which makes them ideal scaffolds for further development as topical agents for IL-13 mediated diseases of the lungs and skin (for example asthma and atopic dermatitis, respectively).


Asunto(s)
Dermatitis Atópica/genética , Interleucina-13/metabolismo , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 2/antagonistas & inhibidores , Humanos , Transducción de Señal
16.
ACS Med Chem Lett ; 10(3): 341-347, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30891137

RESUMEN

In order to study the role of S1PRs in inflammatory skin disease, S1PR modulators are dosed orally and topically in animal models of disease. The topical application of S1PR modulators in these models may, however, lead to systemic drug concentrations, which can complicate interpretation of the observed effects. We set out to design soft drug S1PR modulators as topical tool compounds to overcome this limitation. A fast follower approach starting from the drug ponesimod allowed the rapid development of an active phenolic series of soft drugs. The phenols were, however, chemically unstable. Protecting the phenol as an ester removed the instability and provided a compound that is converted by enzymatic hydrolysis in the skin to the phenolic soft drug species. In simple formulations, topical dosing of these S1PR modulators to mice led to micromolar skin concentrations but no detectable blood concentrations. These topical tools will allow researchers to investigate the role of S1PR in skin, without involvement of systemic S1PR biology.

17.
Sci Rep ; 9(1): 3164, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816201

RESUMEN

RNA interference (RNAi) is an effective way of combating shrimp viruses by using sequence-specific double-stranded (dsRNA) designed to knock down key viral genes. The aim of this study was to use microalgae expressing antiviral dsRNA as a sustainable feed supplement for shrimp offering viral protection. In this proof of concept, we engineered the chloroplast genome of the green microalga Chlamydomonas reinhardtii for the expression of a dsRNA cassette targeting a shrimp yellow head viral gene. We used a previously described chloroplast transformation approach that allows for the generation of stable, marker-free C. reinhardtii transformants without the supplementation of antibiotics. The generated dsRNA-expressing microalgal strain was then used in a shrimp feeding trial to evaluate the efficiency of the algal RNAi-based vaccine against the virus. Shrimps treated with dsRNA-expressed algal cells prior to YHV infection had 50% survival at 8 day-post infection (dpi), whereas 84.1% mortality was observed in control groups exposed to the YHV virus. RT-PCR using viral specific primers revealed a lower infection rate in dsRNA-expressing algae treated shrimp (55.6 ± 11.1%) compared to control groups (88.9 ± 11.1% and 100.0 ± 0.0%, respectively). Our results are promising for using microalgae as a novel, sustainable alternative as a nutritious, anti-viral protective feedstock in shrimp aquaculture.


Asunto(s)
Chlamydomonas reinhardtii/genética , Microalgas/genética , ARN Bicatenario/genética , Replicación Viral/genética , Animales , Antivirales/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/virología , Microalgas/metabolismo , Penaeidae/genética , Penaeidae/virología , Interferencia de ARN , Roniviridae/genética , Roniviridae/patogenicidad , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética
18.
Microb Cell Fact ; 18(1): 19, 2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696436

RESUMEN

BACKGROUND: The Twin-arginine translocation (Tat) pathway of Escherichia coli has great potential for the export of biopharmaceuticals to the periplasm due to its ability to transport folded proteins, and its proofreading mechanism that allows correctly folded proteins to translocate. Coupling the Tat-dependent protein secretion with the formation of disulfide bonds in the cytoplasm of E. coli CyDisCo provides a powerful platform for the production of industrially challenging proteins. In this study, we investigated the effects on the E. coli cells of exporting a folded substrate (scFv) to the periplasm using a Tat signal peptide, and the effects of expressing an export-incompetent misfolded variant. RESULTS: Cell growth is decreased when either the correctly folded or misfolded scFv is expressed with a Tat signal peptide. However, only the production of misfolded scFv leads to cell aggregation and formation of inclusion bodies. The comprehensive proteomic analysis revealed that both conditions, recombinant protein overexpression and misfolded protein accumulation, lead to downregulation of membrane transporters responsible for protein folding and insertion into the membrane while upregulating the production of chaperones and proteases involved in removing aggregates. These conditions also differentially affect the production of transcription factors and proteins involved in DNA replication. The most distinct stress response observed was the cell aggregation caused by elevated levels of antigen 43. Finally, Tat-dependent secretion causes an increase in tatA expression only after induction of protein expression, while the subsequent post-induction analysis revealed lower tatA and tatB expression levels, which correlate with lowered TatA and TatB protein abundance. CONCLUSIONS: The study identified characteristic changes occurring as a result of the production of both a folded and a misfolded protein, but also highlights an exclusive unfolded stress response. Countering and compensating for these changes may result in higher yields of pharmaceutically relevant proteins exported to the periplasm.


Asunto(s)
Escherichia coli/genética , Estrés Oxidativo , Pliegue de Proteína , Proteoma , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteómica , Proteínas Recombinantes de Fusión/química , Anticuerpos de Cadena Única/química
19.
Microbiol Res ; 218: 97-107, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30454663

RESUMEN

In Escherichia coli, the Twin-arginine translocation (Tat) pathway secretes a set of folded proteins with important physiological functions to the periplasm and outer membrane. The loss of Tat secretion impairs outer membrane integrity and leads to decreased cell growth. Only recently, the Tat pathway has gained more attention due to its essential role in bacterial virulence and applications in the production of fully folded heterologous proteins. In this study, we investigated the influence of the deletion of all active Tat pathway components on the E. coli cells. The comprehensive proteomic analysis revealed activation of several stress responses and experimentally confirmed the dependence of certain proteins on the Tat system for export. We observed that a tat deletion triggers protein aggregation, membrane vesiculation, synthesis of colanic acid and biofilm formation. Furthermore, the mislocalization of Tat-dependent proteins disturbs iron and molybdenum homeostasis and impairs the cell envelope integrity. The results show that the functional Tat pathway is important for the physiological stability and that its dysfunction leads to a series of severe changes in E. coli cells.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Transporte de Proteínas/genética , Estrés Fisiológico/fisiología , Sistema de Translocación de Arginina Gemela/genética , Membrana Celular/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Periplasma/metabolismo , Transporte de Proteínas/fisiología , Proteoma/metabolismo
20.
Biotechnol Bioeng ; 116(4): 722-733, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30536699

RESUMEN

The large-scale production and isolation of recombinant protein is a central element of the biotechnology industry and many of the products have proved extremely beneficial for therapeutic medicine. Escherichia coli is the microorganism of choice for the expression of heterologous proteins for therapeutic application, and a range of high-value proteins have been targeted to the periplasm using the well characterized Sec protein export pathway. More recently, the ability of the second mainstream protein export system, the twin-arginine translocase, to transport fully-folded proteins into the periplasm of not only E. coli, but also other Gram-negative bacteria, has captured the interest of the biotechnology industry. In this study, we have used a novel approach to block the export of a heterologous Tat substrate in the later stages of the export process, and thereby generate a single-span membrane protein with the soluble domain positioned on the periplasmic side of the inner membrane. Biochemical and immuno-electron microscopy approaches were used to investigate the export of human growth hormone by the twin-arginine translocase, and the generation of a single-span membrane-embedded variant. This is the first time that a bonafide biotechnologically relevant protein has been exported by this machinery and visualized directly in this manner. The data presented here demonstrate a novel method for the production of single-span membrane proteins in E. coli.


Asunto(s)
Escherichia coli/metabolismo , Hormona de Crecimiento Humana/metabolismo , Microbiología Industrial , Escherichia coli/citología , Hormona de Crecimiento Humana/análisis , Humanos , Microbiología Industrial/métodos , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad , Sistema de Translocación de Arginina Gemela/análisis , Sistema de Translocación de Arginina Gemela/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...