Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 18: 1354142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689827

RESUMEN

Introduction: Attentional bias to reward-associated stimuli can occur even when it interferes with goal-driven behavior. One theory posits that dopaminergic signaling in the striatum during reward conditioning leads to changes in visual cortical and parietal representations of the stimulus used, and this, in turn, sustains attentional bias even when reward is discontinued. However, only a few studies have examined neural activity during both rewarded and unrewarded task phases. Methods: In the current study, participants first completed a reward-conditioning phase, during which responses to certain stimuli were associated with monetary reward. These stimuli were then included as non-predictive cues in a spatial cueing task. Participants underwent functional brain imaging during both task phases. Results: The results show that striatal activity during the learning phase predicted increased visual cortical and parietal activity and decreased ventro-medial prefrontal cortex activity in response to conditioned stimuli during the test. Striatal activity was also associated with anterior cingulate cortex activation when the reward-conditioned stimulus directed attention away from the target. Discussion: Our findings suggest that striatal activity during reward conditioning predicts the degree to which reward history biases attention through learning-induced changes in visual and parietal activities.

2.
Psychopharmacology (Berl) ; 241(5): 1011-1025, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282126

RESUMEN

RATIONALE: Multiple psychiatric disorders are associated with altered brain and serum levels of neuroactive steroids, including the endogenous GABAergic steroid, allopregnanolone. Clinically, chronic cocaine use was correlated with decreased levels of pregnenolone. Preclinically, the effect of acute cocaine on allopregnanolone levels in rodents has had mixed results, showing an increase or no change in allopregnanolone levels in some brain regions. OBJECTIVE: We hypothesized that cocaine acutely increases allopregnanolone levels, but repeated cocaine exposure decreases allopregnanolone levels compared to controls. METHODS: We performed two separate studies to determine how systemic administration of 15 mg/kg cocaine (1) acutely or (2) chronically alters brain (olfactory bulb, frontal cortex, dorsal striatum, and midbrain) and serum allopregnanolone levels in adult male and female Sprague-Dawley rats. RESULTS: Cocaine acutely increased allopregnanolone levels in the midbrain, but not in olfactory bulb, frontal cortex, or dorsal striatum. Repeated cocaine did not persistently (24 h later) alter allopregnanolone levels in any region in either sex. However, allopregnanolone levels varied by sex across brain regions. In the acute study, we found that females had significantly higher allopregnanolone levels in serum and olfactory bulb relative to males. In the repeated cocaine study, females had significantly higher allopregnanolone levels in olfactory bulb, frontal cortex, and serum. Finally, acute cocaine increased allopregnanolone levels in the frontal cortex of females in proestrus, relative to non-proestrus stages. CONCLUSION: Collectively these results suggest that allopregnanolone levels vary across brain regions and by sex, which may play a part in differential responses to cocaine by sex.


Asunto(s)
Cocaína , Pregnanolona , Humanos , Adulto , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Encéfalo , Mesencéfalo , Cocaína/farmacología
3.
Acad Med ; 99(5): 493-499, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38166321

RESUMEN

ABSTRACT: Outcome data from 6 National Institutes of Health-funded Postbaccalaureate Research Education Programs (PREPs) in the Mid-Atlantic region were combined to give a multi-institutional perspective on their scholars' characteristics and progress through biomedical research training. The institutions hosting these programs were Johns Hopkins University School of Medicine, the Medical University of South Carolina, the University of Maryland School of Medicine, the University of North Carolina at Chapel Hill, Virginia Commonwealth University, and Virginia Polytechnic Institute and State University. The authors summarize the institutional pathways, demographics, undergraduate institutions, and graduate institutions for a total of 384 PREP scholars who completed the programs by June 2021. A total of 228 (59.4%) of these PREP scholars identified as Black or African American, 116 (30.2%) as Hispanic or Latinx, and 269 (70.0%) as female. The authors found that 376 of 384 scholars (97.9%) who started PREP finished their program, 319 of 376 (84.8%) who finished PREP matriculated into PhD or MD/PhD programs, and 284 of 319 (89.0%) who matriculated have obtained their PhD or are successfully making progress toward their PhD.


Asunto(s)
Investigación Biomédica , Humanos , Femenino , Masculino , Estados Unidos , Facultades de Medicina/organización & administración , Negro o Afroamericano/estadística & datos numéricos , Hispánicos o Latinos/estadística & datos numéricos , South Carolina , Adulto , Evaluación de Programas y Proyectos de Salud , Universidades
4.
Biomolecules ; 13(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37627270

RESUMEN

The neurosteroid 3α,5α-THP is a potent GABAA receptor-positive modulator and its regulatory action on the HPA axis stress response has been reported in numerous preclinical and clinical studies. We previously demonstrated that 3α,5α-THP down-regulation of HPA axis activity during stress is sex-, brain region- and stressor-dependent. In this study, we observed a deleterious submersion behavior in response to 3α,5α-THP (15 mg/kg) during forced swim stress (FSS) that led us to investigate how 3α,5α-THP might affect behavioral coping strategies engaged in by the animal. Given the well-established involvement of the opioid system in HPA axis activation and its interaction with GABAergic neurosteroids, we explored the synergic effects of 3α,5α-THP/opiate system activation in this behavior. Serum ß-endorphin (ß-EP) was elevated by FSS and enhanced by 3α,5α-THP + FSS. Hypothalamic Mu-opiate receptors (MOP) were increased in female rats by 3α,5α-THP + FSS. Pretreatment with the MOP antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 2 mg/kg, IP) reversed submersion behavior in males. Moreover, in both males and females, CTAP pretreatment decreased immobility episodes while increasing immobility duration but did not alter swimming duration. This interaction between 3α,5α-THP and the opioid system in the context of FSS might be important in the development of treatment for neuropsychiatric disorders involving HPA axis activation.


Asunto(s)
Analgésicos Opioides , Neuroesteroides , Femenino , Masculino , Animales , Ratas , Pregnanolona/farmacología , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Natación , Receptores de GABA-A
5.
Addict Neurosci ; 72023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37576436

RESUMEN

Alcohol misuse and, particularly adolescent drinking, is a major public health concern. While evidence suggests that adolescent alcohol use affects frontal brain regions that are important for cognitive control over behavior little is known about how acute alcohol exposure alters large-scale brain networks and how sex and age may moderate such effects. Here, we employ a recently developed functional magnetic resonance imaging (fMRI) protocol to acquire rat brain functional connectivity data and use an established analytical pipeline to examine the effect of sex, age, and alcohol dose on connectivity within and between three major rodent brain networks: defaul mode, salience, and lateral cortical network. We identify the intra- and inter-network connectivity differences and establish moderation models to reveal significant influences of age on acute alcohol-induced lateral cortical network connectivity. Through this work, we make brain-wide isotropic fMRI data with acute alcohol challenge publicly available, with the hope to facilitate future discovery of brain regions/circuits that are causally relevant to the impact of acute alcohol use.

6.
Addict Neurosci ; 72023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37424633

RESUMEN

The non-selective opioid receptor antagonist, naltrexone is one of the most prescribed medications for treating alcohol and opioid addiction. Despite decades of clinical use, the mechanism(s) by which naltrexone reduces addictive behavior remains unclear. Pharmaco-fMRI studies to date have largely focused on naltrexone's impact on brain and behavioral responses to drug or alcohol cues or on decision-making circuitry. We hypothesized that naltrexone's effects on reward-associated brain regions would associate with reduced attentional bias (AB) to non-drug, reward-conditioned cues. Twenty-three adult males, including heavy and light drinkers, completed a two-session, placebo-controlled, double-blind study testing the effects of acute naltrexone (50 mg) on AB to reward-conditioned cues and neural correlates of such bias measured via fMRI during a reward-driven AB task. While we detected significant AB to reward-conditioned cues, naltrexone did not reduce this bias in all participants. A whole-brain analysis found that naltrexone significantly altered activity in regions associated with visuomotor control regardless of whether a reward-conditioned distractor was present. A region-of-interest analysis of reward-associated areas found that acute naltrexone increased BOLD signal in the striatum and pallidum. Moreover, naltrexone effects in the pallidum and putamen predicted individual reduction in AB to reward-conditioned distractors. These findings suggest that naltrexone's effects on AB primarily reflect not reward processing per se, but rather top-down control of attention. Our results suggest that the therapeutic actions of endogenous opioid blockade may reflect changes in basal ganglia function enabling resistance to distraction by attractive environmental cues, which could explain some variance in naltrexone's therapeutic efficacy.

7.
Alcohol Clin Exp Res ; 46(5): 759-769, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35307830

RESUMEN

BACKGROUND: Binge alcohol exposure during adolescence results in long-lasting alterations in the brain and behavior. For example, adolescent intermittent ethanol (AIE) exposure in rodents results in long-term loss of functional connectivity among prefrontal cortex (PFC) and striatal regions as well as a variety of neurochemical, molecular, and epigenetic alterations. Interneurons in the PFC and striatum play critical roles in behavioral flexibility and functional connectivity. For example, parvalbumin (PV) interneurons are known to contribute to neural synchrony and cholinergic interneurons contribute to strategy selection. Furthermore, extracellular perineuronal nets (PNNs) that surround some interneurons, particularly PV+ interneurons, further regulate cellular plasticity. The effect of AIE exposure on the expression of these markers within the PFC is not well understood. METHODS: The present study tested the hypothesis that AIE exposure reduces the expression of PV+ and choline acetyltransferase (ChAT)+ interneurons in the adult PFC and striatum and increases the related expression of PNNs (marked by binding of Wisteria floribunda agglutinin lectin) in adulthood. Male rats were exposed to AIE (5 g/kg/day, 2-days-on/2-days-off, i.e., P25 to P54) or water (CON), and brain tissue was harvested in adulthood (>P80). Immunohistochemistry and co-immunofluorescence were used to assess the expression of ChAT, PV, and PNNs within the adult PFC and striatum following AIE exposure. RESULTS: ChAT and PV interneuron densities in the striatum and PFC were unchanged after AIE exposure. However, PNN density in the PFC of AIE-exposed rats was greater than in CON rats. Moreover, significantly more PV neurons were surrounded by PNNs in AIE-exposed subjects than controls in both PFC subregions assessed: orbitofrontal cortex (CON = 34%; AIE = 40%) and medial PFC (CON = 10%; AIE = 14%). CONCLUSIONS: These findings indicate that, following AIE exposure, PV interneuron expression in the adult PFC and striatum is unaltered, while PNNs surrounding these neurons are increased. This increase in PNNs may restrict the plasticity of the ensheathed neurons, thereby contributing to impaired microcircuitry in frontostriatal connectivity and related behavioral impairments.


Asunto(s)
Etanol , Interneuronas , Adolescente , Adulto , Animales , Etanol/metabolismo , Matriz Extracelular/metabolismo , Humanos , Interneuronas/metabolismo , Masculino , Parvalbúminas/metabolismo , Corteza Prefrontal/metabolismo , Ratas
8.
Nutr Neurosci ; 25(3): 593-602, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32578521

RESUMEN

Animals and humans are motivated to consume high-fat, high-calorie foods by cues predicting such foods. The neural mechanisms underlying this effect are not well understood.Objective: We tested the hypothesis that cues paired with a food reward, as compared to explicitly unpaired cues, increase rats' food-seeking behavior by potentiating dopamine release in the nucleus accumbens, and that this effect would be less evident under satiety.Methods: We used a simple discriminative stimulus task and electrochemical recordings of dopamine release in freely moving rats.Results: We found that both food-predictive cue and hunger increased conditioned approaches to the receptacle (food-seeking behavior indicated by movement to the food receptacle). In addition, we observed dopamine release when the food-predictive cue (but not the unpaired cue) was presented, independent of hunger or satiety. Finally, we found a positive correlation between dopamine release amplitude and the number of conditioned approaches to the food receptacle in the sated condition, but not in the hungry condition.Discussion: Our results suggest that dopamine could drive seeking behavior for calorie-dense food in absence of homeostatic need, a core aspect of binge eating disorders.


Asunto(s)
Dopamina , Recompensa , Animales , Señales (Psicología) , Alimentos , Núcleo Accumbens , Ratas
9.
Br J Pharmacol ; 179(8): 1565-1577, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34389975

RESUMEN

BACKGROUND AND PURPOSE: Currently, there is no effective drug to treat cocaine-use disorder, which affects millions of people worldwide. Benzodiazepines are potential therapeutic candidates, as microdialysis and voltammetry studies have shown that they can decrease dopamine concentrations in the nucleus accumbens of rodents and block the increase in dopamine levels and appetitive 50-kHz ultrasonic vocalizations (USVs) induced by amphetamine in rats. EXPERIMENTAL APPROACH: Here, we tested whether administration of 2.5-mg·kg-1 diazepam (i.p.) in adult male rats could block the effects of 20-mg·kg-1 cocaine (i.p.) on electrically evoked phasic dopamine signals in the nucleus accumbens measured by fast-scan cyclic voltammetry, as well as 50-kHz USV and locomotor activity. KEY RESULTS: Cocaine injection increased evoked dopamine signals up to threefold within 5 min, and the increase was significantly higher than baseline for at least 75 min. The injection of diazepam, 5 min after cocaine, attenuated the cocaine effect by nearly 50%, and this attenuation was maintained for at least 40 min. Behaviourally, cocaine increased the number of appetitive 50-kHz calls by about 12-fold. Diazepam significantly blocked this effect for the entire duration of the session. Also, cocaine-treated rats were more active than controls and diazepam significantly attenuated cocaine-induced locomotion, by up to 50%. CONCLUSION AND IMPLICATIONS: These results suggest that the neurochemical and psychostimulant effects of cocaine can be mitigated by diazepam. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Asunto(s)
Cocaína , Dopamina , Animales , Cocaína/farmacología , Diazepam/farmacología , Dopamina/farmacología , Humanos , Locomoción , Masculino , Núcleo Accumbens , Ratas , Ultrasonido , Vocalización Animal
10.
Front Pharmacol ; 12: 778884, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912227

RESUMEN

Behavioral flexibility, the ability to modify behavior according to changing conditions, is essential to optimize decision-making. Deficits in behavioral flexibility that persist into adulthood are one consequence of adolescent alcohol exposure, and another is decreased functional connectivity in brain structures involved in decision-making; however, a link between these two outcomes has not been established. We assessed effects of adolescent alcohol and sex on both Pavlovian and instrumental behaviors and resting-state functional connectivity MRI in adult animals to determine associations between behavioral flexibility and resting-state functional connectivity. Alcohol exposure impaired attentional set reversals and decreased functional connectivity among cortical and subcortical regions-of-interest that underlie flexible behavior. Moreover, mediation analyses indicated that adolescent alcohol-induced reductions in functional connectivity within a subnetwork of affected brain regions statistically mediated errors committed during reversal learning. These results provide a novel link between persistent reductions in brain functional connectivity and deficits in behavioral flexibility resulting from adolescent alcohol exposure.

11.
Int Rev Neurobiol ; 160: 305-340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34696877

RESUMEN

Alcohol drinking is often initiated during adolescence, and this frequently escalates to binge drinking. As adolescence is also a period of dynamic neurodevelopment, preclinical evidence has highlighted that some of the consequences of binge drinking can be long lasting with deficits persisting into adulthood in a variety of cognitive-behavioral tasks. However, while the majority of preclinical work to date has been performed in male rodents, the rapid increase in binge drinking in adolescent female humans has re-emphasized the importance of addressing alcohol effects in the context of sex as a biological variable. Here we review several of the consequences of adolescent ethanol exposure in light of sex as a critical biological variable. While some alcohol-induced outcomes, such as non-social approach/avoidance behavior and sleep disruption, are generally consistent across sex, others are variable across sex, such as alcohol drinking, sensitivity to ethanol, social anxiety-like behavior, and induction of proinflammatory markers.


Asunto(s)
Consumo de Bebidas Alcohólicas , Etanol , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Etanol/toxicidad , Femenino , Masculino , Roedores , Factores Sexuales
12.
Int Rev Neurobiol ; 160: 117-173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34696872

RESUMEN

Cognitive flexibility in decision making depends on prefrontal cortical function and is used by individuals to adapt to environmental changes in circumstances. Cognitive flexibility can be measured in the laboratory using a variety of discrete, translational tasks, including those that involve reversal learning and/or set-shifting ability. Distinct components of flexible behavior rely upon overlapping brain circuits, including different prefrontal substructures that have separable impacts on decision making. Cognitive flexibility is impaired after chronic alcohol exposure, particularly during development when the brain undergoes rapid maturation. This review examines how cognitive flexibility, as indexed by reversal and set-shifting tasks, is impacted by chronic alcohol exposure in adulthood, adolescent, and prenatal periods in humans and animal models. We also discuss areas for future study, including mechanisms that may contribute to the persistence of cognitive deficits after developmental alcohol exposure and the compacting consequences from exposure across multiple critical periods.


Asunto(s)
Trastornos del Conocimiento , Etanol , Animales , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/fisiopatología , Etanol/toxicidad , Humanos
13.
Neuroimage ; 243: 118541, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478824

RESUMEN

Resting-state functional magnetic resonance imaging (fMRI) has drastically expanded the scope of brain research by advancing our knowledge about the topologies, dynamics, and interspecies translatability of functional brain networks. Several databases have been developed and shared in accordance with recent key initiatives in the rodent fMRI community to enhance the transparency, reproducibility, and interpretability of data acquired at various sites. Despite these pioneering efforts, one notable challenge preventing efficient standardization in the field is the customary choice of anisotropic echo planar imaging (EPI) schemes with limited spatial coverage. Imaging with anisotropic resolution and/or reduced brain coverage has significant shortcomings including reduced registration accuracy and increased deviation in brain feature detection. Here we proposed a high-spatial-resolution (0.4 mm), isotropic, whole-brain EPI protocol for the rat brain using a horizontal slicing scheme that can maintain a functionally relevant repetition time (TR), avoid high gradient duty cycles, and offer unequivocal whole-brain coverage. Using this protocol, we acquired resting-state EPI fMRI data from 87 healthy rats under the widely used dexmedetomidine sedation supplemented with low-dose isoflurane on a 9.4 T MRI system. We developed an EPI template that closely approximates the Paxinos and Watson's rat brain coordinate system and demonstrated its ability to improve the accuracy of group-level approaches and streamline fMRI data pre-processing. Using this database, we employed a multi-scale dictionary-learning approach to identify reliable spatiotemporal features representing rat brain intrinsic activity. Subsequently, we performed k-means clustering on those features to obtain spatially discrete, functional regions of interest (ROIs). Using Euclidean-based hierarchical clustering and modularity-based partitioning, we identified the topological organizations of the rat brain. Additionally, the identified group-level FC network appeared robust across strains and sexes. The "triple-network" commonly adapted in human fMRI were resembled in the rat brain. Through this work, we disseminate raw and pre-processed isotropic EPI data, a rat brain EPI template, as well as identified functional ROIs and networks in standardized rat brain coordinates. We also make our analytical pipelines and scripts publicly available, with the hope of facilitating rat brain resting-state fMRI study standardization.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Animales , Mapeo Encefálico/métodos , Análisis por Conglomerados , Procesamiento de Imagen Asistido por Computador/métodos , Isoflurano , Masculino , Ratas , Reproducibilidad de los Resultados
14.
Neuropsychopharmacology ; 46(8): 1421-1431, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33727642

RESUMEN

Individuals who abuse alcohol often show exaggerated attentional bias (AB) towards alcohol-related cues, which is thought to reflect reward conditioning processes. Rodent studies indicate that dopaminergic pathways play a key role in conditioned responses to reward- and alcohol-associated cues. However, investigation of the dopaminergic circuitry mediating this process in humans remains limited. We hypothesized that depletion of central dopamine levels in adult alcohol drinkers would attenuate AB and that these effects would be mediated by altered function in frontolimbic circuitry. Thirty-four male participants (22-38 years, including both social and heavy drinkers) underwent a two-session, placebo-controlled, double-blind dopamine precursor depletion procedure. At each visit, participants consumed either a balanced amino acid (control) beverage or an amino acid beverage lacking dopamine precursors (order counterbalanced), underwent resting-state fMRI, and completed behavioral testing on three AB tasks: an alcohol dot-probe task, an alcohol attentional blink task, and a task measuring AB to a reward-conditioned cue. Dopamine depletion significantly diminished AB in each behavioral task, with larger effects among subjects reporting higher levels of binge drinking. The depletion procedure significantly decreased resting-state functional connectivity among ventral tegmental area, striatum, amygdala, and prefrontal regions. Beverage-related AB decreases were mediated by decreases in functional connectivity between the fronto-insular cortex and striatum and, for alcohol AB only, between anterior cingulate cortex and amygdala. The results support a substantial role for dopamine in AB, and suggest specific dopamine-modulated functional connections between frontal, limbic, striatal, and brainstem regions mediate general reward AB versus alcohol AB.


Asunto(s)
Sesgo Atencional , Dopamina , Adulto , Encéfalo/diagnóstico por imagen , Señales (Psicología) , Etanol , Humanos , Imagen por Resonancia Magnética , Masculino
15.
J Neurophysiol ; 125(3): 768-780, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356905

RESUMEN

Individuals with substance use disorders (SUDs) transition more quickly from goal-directed to habitual action-selection, but the neural mechanisms underlying this phenomenon remain unclear. Data from animal models suggest that drugs of abuse can modify the neurocircuits that regulate action-selection, enhancing circuits that drive inflexible, habit-based stimulus-response (S-R) action-selection and weakening circuits that drive flexible, goal-directed actions. Here, we tested the effect of bilateral 10-Hz transcranial alternating current stimulation (10Ηz-tACs) of the dorsolateral prefrontal cortex on action-selection in men and women with a SUD history and an age- and sex-matched control group. We tested the hypothesis that true 10Ηz-tACS versus active sham stimulation would reduce perseverative errors after changed response contingencies for well-learned S-R associations, reflecting reduced habit-based action-selection, specifically in the SUD group. We found that 10 Hz-tACS increased perseverative errors in the control group, but in the SUD group, 10 Hz-tACS effects on perseverative errors depended on substance abuse duration: a longer addiction history was associated with a greater reduction of perseverative errors. These results suggest that 10Ηz-tACs altered circuit level dynamics regulating behavioral flexibility, and provide a foundation for future studies to test stimulation site, frequency, and timing specificity. Moreover, these data suggest that chronic substance abuse is associated with altered circuit dynamics that are ameliorated by 10Ηz-tACs. Determining the generalizability of these effects and their duration merits investigation as a direction for novel therapeutic interventions. These findings are timely based on growing interest in transcranial stimulation methods for treating SUDs.NEW & NOTEWORTHY Treating the executive dysfunction associated with addiction is hampered by redundancies in pharmacological regulation of different behavioral control circuits. Thus, nonpharmacological interventions hold promise for addiction treatment. Here, we show that, among people with an addiction history, 10-Hz transcranial alternating current stimulation (10Hz-tACS) of the dorsolateral prefrontal cortex can reduce habitual actions. The fact that 10Hz-tACS can regulate behavioral flexibility suggests its possible utility in reducing harmful habitual actions.


Asunto(s)
Conducta Adictiva/fisiopatología , Hábitos , Corteza Prefrontal/fisiopatología , Desempeño Psicomotor/fisiología , Trastornos Relacionados con Sustancias/fisiopatología , Estimulación Transcraneal de Corriente Directa/métodos , Adolescente , Adulto , Conducta Adictiva/psicología , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa/métodos , Trastornos Relacionados con Sustancias/psicología , Estimulación Transcraneal de Corriente Directa/psicología , Adulto Joven
16.
Psychopharmacology (Berl) ; 237(4): 979-996, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31897574

RESUMEN

RATIONALE: Few effective treatments exist for cocaine use disorders due to gaps in knowledge about its complex etiology. Genetically defined animal models provide a useful tool for advancing our understanding of the biological and genetic underpinnings of addiction-related behavior and evaluating potential treatments. However, many attempts at developing mouse models of behavioral disorders were based on overly simplified single gene perturbations, often leading to inconsistent and misleading results in pre-clinical pharmacology studies. A genetically complex mouse model may better reflect disease-related behaviors. OBJECTIVES: Screening defined, yet genetically complex, intercrosses of the Collaborative Cross (CC) mice revealed two lines, RIX04/17 and RIX41/51, with extreme high and low behavioral responses to cocaine. We characterized these lines as well as their CC parents, CC004/TauUnc and CC041/TauUnc, to evaluate their utility as novel model systems for studying the biological and genetic mechanisms underlying behavioral responses to cocaine. METHODS: Behavioral responses to acute (initial locomotor sensitivity) and repeated (behavioral sensitization, conditioned place preference, intravenous self-administration) exposures to cocaine were assessed. We also examined the monoaminergic system (striatal tissue content and in vivo fast scan cyclic voltammetry), HPA axis reactivity, and circadian rhythms as potential mechanisms for the divergent phenotypic behaviors observed in the two strains, as these systems have a previously known role in mediating addiction-related behaviors. RESULTS: RIX04/17 and 41/51 show strikingly divergent initial locomotor sensitivity to cocaine with RIX04/17 exhibiting very high and RIX41/51 almost no response. The lines also differ in the emergence of behavioral sensitization with RIX41/51 requiring more exposures to exhibit a sensitized response. Both lines show conditioned place preference for cocaine. We determined that the cocaine sensitivity phenotype in each RIX line was largely driven by the genetic influence of one CC parental strain, CC004/TauUnc and CC041/TauUnc. CC004 demonstrates active operant cocaine self-administration and CC041 is unable to acquire under the same testing conditions, a deficit which is specific to cocaine as both strains show operant response for a natural food reward. Examination of potential mechanisms driving differential responses to cocaine show strain differences in molecular and behavioral circadian rhythms. Additionally, while there is no difference in striatal dopamine tissue content or dynamics, there are selective differences in striatal norepinephrine and serotonergic tissue content. CONCLUSIONS: These CC strains offer a complex polygenic model system to study underlying mechanisms of cocaine response. We propose that CC041/TauUnc and CC004/TauUnc will be useful for studying genetic and biological mechanisms underlying resistance or vulnerability to the stimulatory and reinforcing effects of cocaine.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Cocaína/administración & dosificación , Ratones de Colaboración Cruzada/genética , Locomoción/genética , Refuerzo en Psicología , Recompensa , Animales , Conducta Adictiva/genética , Conducta Adictiva/metabolismo , Conducta Adictiva/psicología , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/psicología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Inhibidores de Captación de Dopamina/administración & dosificación , Femenino , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Locomoción/efectos de los fármacos , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Autoadministración , Especificidad de la Especie
17.
Front Pharmacol ; 11: 608887, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519475

RESUMEN

Mesolimbic dopamine transmission is dysregulated in multiple psychiatric disorders, including addiction. Previous studies found that the endogenous GABAergic steroid (3α,5α)-3-hydroxy-5-pregnan-20-one (allopregnanolone) modulates dopamine levels in the nucleus accumbens and prefrontal cortex. As allopregnanolone is a potent positive allosteric modulator of GABAA receptors, and GABAA receptors can regulate dopamine release, we hypothesized that allopregnanolone would reduce phasic fluctuations in mesolimbic dopamine release that are important in learning and reward processing. We used fast-scan cyclic voltammetry in anesthetized female and male rats to measure dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area, before and after administration of allopregnanolone. Allopregnanolone (7.5-25 mg/kg, IP) reduced evoked dopamine release in both male and female rats, compared to ß-cyclodextrin vehicle. In males, all doses of allopregnanolone decreased dopamine transmission, with stronger effects at 15 and 25 mg/kg allopregnanolone. In females, 15 and 25 mg/kg allopregnanolone reduced dopamine release, while 7.5 mg/kg allopregnanolone was no different from vehicle. Since allopregnanolone is derived from progesterone, we hypothesized that high endogenous progesterone levels would result in lower sensitivity to allopregnanolone. Consistent with this, females in proestrus (high progesterone levels) were less responsive to allopregnanolone than females in other estrous cycle stages. Furthermore, 30 mg/kg progesterone reduced evoked dopamine release in males, similar to allopregnanolone. Our findings confirm that allopregnanolone reduces evoked dopamine release in both male and female rats. Moreover, sex and the estrous cycle modulated this effect of allopregnanolone. These results extend our knowledge about the pharmacological effects of neurosteroids on dopamine transmission, which may contribute to their therapeutic effects.

18.
Behav Brain Res ; 373: 112085, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31319133

RESUMEN

Alcohol exposure is linked to behavioral flexibility deficits in humans, but it is unclear when the critical exposure occurred or if alcohol exposure alone is sufficient to produce behavior deficits. Increasing evidence shows that binge levels of alcohol during adolescence are particularly harmful to the brain, producing physiological and behavioral effects that can persist into adulthood. The present study determined whether adolescent intermittent ethanol (AIE) in rats impaired action selection in a discriminative stimulus task using a foraging response. Rats were exposed to ethanol during adolescence (5 g/kg/day, IG, 2-days-on/2-days-off, postnatal day 25-54). In adulthood, they learned to dig for food reward buried in one of two media, cued with one of two odors. AIE and control rats both learned to discriminate between olfactory cues, but AIE rats were impaired when reversing that learned association (first intra-dimensional reversal). However, AIE rats were faster to reinstate the original odor discrimination rule (second reversal), suggesting perseverative behavior. Next, the reward location was cued by digging media rather than odor. Both groups learned this extra-dimensional shift; however, control rats were slower to reach criterion. These findings are consistent with studies of people with substance abuse disorder, who learn new stimulus-response associations similarly to, or better than, control subjects, but perseverate when attempting to replace a well-learned association. These data suggest that adolescent binge-alcohol exposure contributes to behavioral flexibility deficits observed in adulthood.


Asunto(s)
Adaptación Fisiológica/fisiología , Etanol/efectos adversos , Conducta Alimentaria/efectos de los fármacos , Factores de Edad , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Atención/efectos de los fármacos , Encéfalo/efectos de los fármacos , Etanol/metabolismo , Etanol/farmacología , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Recompensa
19.
Alcohol Clin Exp Res ; 43(9): 1806-1822, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31335972

RESUMEN

The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.


Asunto(s)
Conducta/efectos de los fármacos , Encéfalo/efectos de los fármacos , Etanol/efectos adversos , Consumo de Alcohol en Menores , Animales , Humanos , Neuroinmunomodulación/efectos de los fármacos
20.
Biol Sex Differ ; 10(1): 37, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315660

RESUMEN

BACKGROUND: Nicotine exposure enhances Pavlovian conditioned approach (PCA), or the learned approach to reward-predictive cues. While females show elevated approach to conditioned stimuli compared to males, potentially indicating heightened addiction vulnerability, it is unknown how sex may interact with nicotine to influence approach behavior. Additionally, brain-derived neurotrophic factor (BDNF) levels can be altered significantly after repeated nicotine exposure, suggesting a potential mechanism contributing to nicotine-induced behavioral phenotypes. The present study investigated the role of sex on nicotine-induced changes to stimulus-response behavior and associated BDNF protein levels. METHODS: Male and female rats were exposed to nicotine (0.4 mg/kg, subcutaneously) or saline 15 min prior to each PCA session. PCA training consisted of 29 sessions of 15 trials, in which a 30-s cue presentation ended concurrently with a sucrose reward (20% w/v in water, 100 µL), and a 120-s variable intertrial interval occurred between trials. Approach behavior to the cue and reward receptacle was recorded. Preference toward the reward receptacle indicated a goal-tracking phenotype, and preference toward the cue indicated a sign-tracking phenotype, demonstrating that the cue had gained incentive salience. Twenty-four hours after the last PCA session, brain tissue was collected and BDNF levels were measured in the basolateral amygdala, orbitofrontal cortex, and nucleus accumbens using Western blot analysis. RESULTS: Nicotine exposure enhanced both sign- and goal-tracking conditioned approach, and females showed elevated sign-tracking compared to males. There were no sex-by-drug interactions on conditioned approach. Day-to-day variability in conditioned approach was similar between sexes. In contrast to prior studies, neither repeated exposure to nicotine nor sex significantly affected BDNF expression. CONCLUSIONS: Drug-naïve females exhibited heightened sign-tracking compared to males, and nicotine enhanced conditioned approach similarly in males and females. Further, non-significant changes to BDNF expression in brain regions highly associated with PCA indicate that BDNF is unlikely to drive nicotine-enhanced conditioned behavior.


Asunto(s)
Condicionamiento Psicológico/efectos de los fármacos , Nicotina/farmacología , Animales , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...