Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(24): 9901-9908, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38850234

RESUMEN

The response range of an ion-selective electrode (ISE) has been described by counterion interference at the lower and Donnan failure at the upper detection limit. This approach fails when the potentiometric response at the upper detection limit exhibits an apparently super-Nernstian response, as has been reported repeatedly for H+-selective electrodes. While also observed when samples contain other anions, super-Nernstian responses at low pH are a problem in particular for samples that contain phthalate, a common component of commercial pH calibration solutions. This work shows that coextraction of H+ and a sample anion into the sensing membrane alone does not explain these super-Nernstian responses, even when membrane-internal diffusion potentials are taken into account. Instead, these super-Nernstian responses are explained by the formation of complexes between that anion and at least two protonated ionophore molecules. As demonstrated by experiments and explained with quantitative phase boundary models, the apparently super-Nernstian responses at low pH can be eliminated by restricting the molecular ratio of ionophore and ionic sites. Notably, this conclusion results in recommendations for the optimization of sensing membranes that, in some instances, will conflict with previously reported recommendations from the ionic site theory for the optimization of the lower detection limit. This mechanistic insight is key to maximizing the response range of these ionophore-based ISEs.

2.
Org Lett ; 26(22): 4606-4609, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38809009

RESUMEN

Contributions from quantum mechanical tunneling to the rates of several radical coupling reactions between carbon sp2 centers used as key steps in natural product total syntheses were computed using density functional theory. Contributions ranging from ∼15-52% from tunneling were predicted at room temperature, thereby indicating that tunneling plays an important role in the rates of these reactions and should perhaps be considered when designing complex synthetic schemes.

3.
Anal Chem ; 96(5): 2236-2243, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38277487

RESUMEN

AgCl-coated silver fabricated with the thermal-electrolytic method can be used to prepare more reproducible reference electrodes than Ag/AgCl prepared with alternative methods such as electrolytic and chemical AgCl deposition or thermal fabrication. However, thermal-electrolytic fabrication requires a scaffold material upon which to build the layers upon. Platinum and rhodium have been used for this purpose as they are mechanically strong and chemically inert, but their cost is prohibitive for wider application. Herein, we report the stability of Ag/AgCl reference electrodes built atop a titanium scaffold using the thermal-electrolytic method and the use of these Ti/Ag/AgCl constructs in capillary-based reference electrodes. Electrochemical characterization shows that the probable presence of small amounts of oxygen at the Ti/Ag interface does not affect the reference electrode performance; in particular, over a wide pH range, the half-cell potential is pH independent. The electrical resistance of the Ti/Ag/AgCl/KCl system is dominated by the charge transfer resistance at the interface of the AgCl to KCl solution but is kept very small by the large AgCl surface area and a high solution concentration of chloride. The resulting high exchange current minimizes the effect of system impurities on the reference half-cell potential. Capillary-based reference electrodes comprising Ti/Ag/AgCl show exceptionally low potential drifts (as low as 0.03 ± 2.01 µV/h) and standard deviations of the potential at or below ±0.5 mV over a 60 h period. These capillary-based reference electrodes are suitable for very small sample volumes while still providing a free-flowing liquid junction that prevents reference electrode contamination.

5.
J Am Chem Soc ; 140(5): 1956-1965, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29309727

RESUMEN

The stereoselective oxidative coupling of cyclic ketones via silyl bis-enol ethers followed by ring-closing metathesis is shown to be a general and powerful reaction sequence for the preparation of diverse polycyclic scaffolds from simple precursors. The modular strategy successfully constructs substructures prevalent in numerous bioactive natural product families, varying in substitution and carbocyclic composition. Several of the prepared compounds were shown to possess potent cytotoxic activity against a panel of tumor cell lines. The utility of this strategy was further demonstrated by a concise and highly convergent 17-step formal synthesis of the complex antimalarial marine diterpene, (+)-7,20-diisocyanoadociane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...