Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
2.
J Intern Med ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973251

RESUMEN

BACKGROUND: Spinocerebellar ataxia 4 (SCA4), characterized in 1996, features adult-onset ataxia, polyneuropathy, and linkage to chromosome 16q22.1; its underlying mutation has remained elusive. OBJECTIVE: To explore the radiological and neuropathological abnormalities in the entire neuroaxis in SCA4 and search for its mutation. METHODS: Three Swedish families with undiagnosed ataxia went through clinical, neurophysiological, and neuroimaging tests, including PET studies and genetic investigations. In four cases, neuropathological assessments of the neuroaxis were performed. Genetic testing included short read whole genome sequencing, short tandem repeat analysis with ExpansionHunter de novo, and long read sequencing. RESULTS: Novel features for SCA4 include dysautonomia, motor neuron affection, and abnormal eye movements. We found evidence of anticipation; neuroimaging demonstrated atrophy in the cerebellum, brainstem, and spinal cord. [18F]FDG-PET demonstrated brain hypometabolism and [11C]Flumazenil-PET reduced binding in several brain lobes, insula, thalamus, hypothalamus, and cerebellum. Moderate to severe loss of Purkinje cells in the cerebellum and of motor neurons in the anterior horns of the spinal cord along with pronounced degeneration of posterior tracts was also found. Intranuclear, mainly neuronal, inclusions positive for p62 and ubiquitin were sparse but widespread in the CNS. This finding prompted assessment for nucleotide expansions. A polyglycine stretch encoding GGC expansions in the last exon of the zink finger homeobox 3 gene was identified segregating with disease and not found in 1000 controls. CONCLUSIONS: SCA4 is a neurodegenerative disease caused by a novel GGC expansion in the coding region of ZFHX3, and its spectrum is expanded to include dysautonomia and neuromuscular manifestations.

3.
Lancet Reg Health Eur ; 39: 100881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38803632

RESUMEN

Background: Childhood cancer predisposition (ChiCaP) syndromes are increasingly recognized as contributing factors to childhood cancer development. Yet, due to variable availability of germline testing, many children with ChiCaP might go undetected today. We report results from the nationwide and prospective ChiCaP study that investigated diagnostic yield and clinical impact of integrating germline whole-genome sequencing (gWGS) with tumor sequencing and systematic phenotyping in children with solid tumors. Methods: gWGS was performed in 309 children at diagnosis of CNS (n = 123, 40%) or extracranial (n = 186, 60%) solid tumors and analyzed for disease-causing variants in 189 known cancer predisposing genes. Tumor sequencing data were available for 74% (227/309) of patients. In addition, a standardized clinical assessment for underlying predisposition was performed in 95% (293/309) of patients. Findings: The prevalence of ChiCaP diagnoses was 11% (35/309), of which 69% (24/35) were unknown at inclusion (diagnostic yield 8%, 24/298). A second-hit and/or relevant mutational signature was observed in 19/21 (90%) tumors with informative data. ChiCaP diagnoses were more prevalent among patients with retinoblastomas (50%, 6/12) and high-grade astrocytomas (37%, 6/16), and in those with non-cancer related features (23%, 20/88), and ≥2 positive ChiCaP criteria (28%, 22/79). ChiCaP diagnoses were autosomal dominant in 80% (28/35) of patients, yet confirmed de novo in 64% (18/28). The 35 ChiCaP findings resulted in tailored surveillance (86%, 30/35) and treatment recommendations (31%, 11/35). Interpretation: Overall, our results demonstrate that systematic phenotyping, combined with genomics-based diagnostics of ChiCaP in children with solid tumors is feasible in large-scale clinical practice and critically guides personalized care in a sizable proportion of patients. Funding: The study was supported by the Swedish Childhood Cancer Fund and the Ministry of Health and Social Affairs.

4.
J Neurol Sci ; 460: 123020, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642488

RESUMEN

INTRODUCTION: Brain calcifications are frequent findings on imaging. In a small proportion of cases, these calcifications are associated with pathogenic gene variants, hence termed primary familial brain calcification (PFBC). The clinical penetrance is incomplete and phenotypic variability is substantial. This paper aims to characterize a Swedish PFBC cohort including 25 patients: 20 from seven families and five sporadic cases. METHODS: Longitudinal clinical assessment and CT imaging were conducted, abnormalities were assessed using the total calcification score (TCS). Genetic analyses, including a panel of six known PFBC genes, were performed in all index and sporadic cases. Additionally, three patients carrying a novel pathogenic copy number variant in SLC20A2 had their cerebrospinal fluid phosphate (CSF-Pi) levels measured. RESULTS: Among the 25 patients, the majority (76%) displayed varying symptoms during the initial assessment including motor (60%), psychiatric (40%), and/or cognitive abnormalities (24%). Clinical progression was observed in most patients (78.6%), but there was no significant difference in calcification between the first and second scans, with mean scores of 27.3 and 32.8, respectively. In three families and two sporadic cases, pathogenic genetic variants were identified, including a novel finding, in the SLC20A2 gene. In the three tested patients, the CSF-Pi levels were normal. CONCLUSIONS: This report demonstrates the variable expressivity seen in PFBC and includes a novel pathogenic variant in the SLC20A2 gene. In four families and three sporadic cases, no pathogenic variants were found, suggesting that new PFBC genes remain to be discovered.


Asunto(s)
Calcinosis , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III , Humanos , Masculino , Femenino , Calcinosis/genética , Calcinosis/diagnóstico por imagen , Suecia/epidemiología , Persona de Mediana Edad , Estudios de Cohortes , Adulto , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Anciano , Encefalopatías/genética , Encefalopatías/diagnóstico por imagen , Encefalopatías/líquido cefalorraquídeo , Tomografía Computarizada por Rayos X , Estudios Longitudinales , Encéfalo/diagnóstico por imagen , Encéfalo/patología
5.
Eur J Hum Genet ; 32(3): 333-341, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37277488

RESUMEN

RNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown. In the current study, we present the underlying genetic and molecular cause of Gustavson syndrome. Gustavson syndrome was first reported in 1993 in a large Swedish five-generation family presented with profound X-linked intellectual disability and an early death. Extensive genomic analyses of the family revealed hemizygosity for a novel in-frame deletion in RBMX in affected individuals (NM_002139.4; c.484_486del, p.(Pro162del)). Carrier females were asymptomatic and presented with skewed X-chromosome inactivation, indicating silencing of the pathogenic allele. Affected individuals presented minor phenotypic overlap with Shashi syndrome, indicating a different disease-causing mechanism. Investigation of the variant effect in a neuronal cell line (SH-SY5Y) revealed differentially expressed genes enriched for transcription factors involved in RNA polymerase II transcription. Prediction tools and a fluorescence polarization assay imply a novel SH3-binding motif of hnRNP G, and potentially a reduced affinity to SH3 domains caused by the deletion. In conclusion, we present a novel in-frame deletion in RBMX segregating with Gustavson syndrome, leading to disturbed RNA polymerase II transcription, and potentially reduced SH3 binding. The results indicate that disruption of different protein domains affects the severity of RBMX-associated intellectual disabilities.


Asunto(s)
Sordera , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Neuroblastoma , Atrofia Óptica , Convulsiones , Femenino , Humanos , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/química , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , ARN Polimerasa II , Discapacidad Intelectual/genética , Dominios Homologos src , Proteínas de Unión al ARN/genética
6.
Eur J Med Genet ; 66(10): 104824, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633646

RESUMEN

We describe a boy born with hypospadias and later diagnosed with vesicoureteral reflux and mild cognitive disability. Routine diagnostic investigation by karyotyping, chromosomal microarray (CMA) and trio analysis with whole exome sequencing was normal. However, later CMA performed on DNA from genital tissue showed trisomy 15, which prompted further analysis. Fluorescent in situ hybridization was performed to verify the CMA result and delineate the mosaic rate. Methylation specific MLPA was performed to investigate the parent of origin of the extra chromosome 15. Further medical examination of the boy identified fine Blaschko's lines, indicative of mosaicism, but earlier unnoticed. CMA on genital tissue showed 80% mosaicism for trisomy 15. Bladder mucosa and muscle showed a high degree of trisomy 15 (56% and 45% respectively), while buccal mucosa and abdominal skin showed low-grade or no trisomy 15. The extra chromosome 15 was of maternal origin. This case report describes a boy with two different malformations in the same organ region that carries a high degree of trisomy 15 mosaicism. Hence, the clinical implication is that there is no recurrence risk for sibs, but the boy in his turn risks producing gametes with an extra chromosome 15. Tissue restricted mutations are not commonly described but may cause congenital malformations that affects the information to the family.

7.
Front Med (Lausanne) ; 10: 1172565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575996

RESUMEN

Prader-Willi syndrome (PWS) is a rare disease caused by a lack of expression of inherited imprinted genes in the paternally derived Prader-Willi critical region on chromosome 15q11.2-q13. It is characterized by poor feeding and hypotonia in infancy, intellectual disability, behavioral abnormalities, dysmorphic features, short stature, obesity, and hypogonadism. PWS is not a known cancer predisposition syndrome, but previous investigations regarding the prevalence of cancer in these patients suggest an increased risk of developing specific cancer types such as myeloid leukemia and testicular cancer. We present the results from a Swedish national population-based cohort study of 360 individuals with PWS and 18,000 matched comparisons. The overall frequency of cancer was not increased in our PWS cohort, but we found a high frequency of pediatric cancers. We also performed whole-genome sequencing of blood- and tumor-derived DNAs from a unilateral dysgerminoma in a 13-year-old girl with PWS who also developed bilateral ovarian sex cord tumors with annular tubules. In germline analysis, there were no additional findings apart from the 15q11.2-q13 deletion of the paternal allele, while a pathogenic activating KIT mutation was identified in the tumor. Additionally, methylation-specific multiplex ligation-dependent probe amplification revealed reduced methylation at the PWS locus in the dysgerminoma but not in the blood. In conclusion, our register-based study suggests an increased risk of cancer at a young age, especially testicular and ovarian tumors. We found no evidence of a general increase in cancer risk in patients with PWS. However, given our limited observational time, further studies with longer follow-up times are needed to clarify the lifetime cancer risk in PWS. We have also described the second case of locus-specific loss-of-imprinting in a germ cell tumor in PWS, suggesting a possible mechanism of carcinogenesis.

8.
JCO Precis Oncol ; 7: e2300039, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37384868

RESUMEN

PURPOSE: Several studies have indicated that broad genomic characterization of childhood cancer provides diagnostically and/or therapeutically relevant information in selected high-risk cases. However, the extent to which such characterization offers clinically actionable data in a prospective broadly inclusive setting remains largely unexplored. METHODS: We implemented prospective whole-genome sequencing (WGS) of tumor and germline, complemented by whole-transcriptome sequencing (RNA-Seq) for all children diagnosed with a primary or relapsed solid malignancy in Sweden. Multidisciplinary molecular tumor boards were set up to integrate genomic data in the clinical decision process along with a medicolegal framework enabling secondary use of sequencing data for research purposes. RESULTS: During the study's first 14 months, 118 solid tumors from 117 patients were subjected to WGS, with complementary RNA-Seq for fusion gene detection in 52 tumors. There was no significant geographic bias in patient enrollment, and the included tumor types reflected the annual national incidence of pediatric solid tumor types. Of the 112 tumors with somatic mutations, 106 (95%) exhibited alterations with a clear clinical correlation. In 46 of 118 tumors (39%), sequencing only corroborated histopathological diagnoses, while in 59 cases (50%), it contributed to additional subclassification or detection of prognostic markers. Potential treatment targets were found in 31 patients (26%), most commonly ALK mutations/fusions (n = 4), RAS/RAF/MEK/ERK pathway mutations (n = 14), FGFR1 mutations/fusions (n = 5), IDH1 mutations (n = 2), and NTRK2 gene fusions (n = 2). In one patient, the tumor diagnosis was revised based on sequencing. Clinically relevant germline variants were detected in 8 of 94 patients (8.5%). CONCLUSION: Up-front, large-scale genomic characterization of pediatric solid malignancies provides diagnostically valuable data in the majority of patients also in a largely unselected cohort.


Asunto(s)
Carcinoma , Medicina de Precisión , Humanos , Niño , Recurrencia Local de Neoplasia , Fusión Génica , Genómica
9.
J Neurol Sci ; 451: 120707, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379724

RESUMEN

OBJECTIVE: To perform a screening for Huntington disease (HD) phenocopies in a Swedish cohort. METHODS: Seventy-three DNA samples negative for HD were assessed at a tertiary center in Stockholm. The screening included analyses for C9orf72-frontotemporal dementia/amyotrophic lateral sclerosis (C9orf72-FTD/ALS), octapeptide repeat insertions (OPRIs) in PRNP associated with inherited prion diseases (IPD), Huntington's disease-like 2 (HDL2), spinocerebellar ataxia-2 (SCA2), spinocerebellar ataxia 3 (SCA3) and spinocerebellar ataxia-17 (SCA17). Targeted genetic analysis was carried out in two cases based on the salient phenotypic features. RESULTS: The screening identified two patients with SCA17, one patient with IPD associated with 5-OPRI but none with nucleotide expansions in C9orf72 or for HDL2, SCA2 or SCA3. Furthermore, SGCE-myoclonic-dystonia 11 (SGCE-M-D) and benign hereditary chorea (BHC) was diagnosed in two sporadic cases. WES identified VUS in STUB1 in two patients with predominant cerebellar ataxia. CONCLUSIONS: Our results are in keeping with previous screenings and suggest that other genes yet to be discovered are involved in the etiology of HD phenocopies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Huntington , Enfermedades por Prión , Priones , Humanos , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Esclerosis Amiotrófica Lateral/genética , Suecia , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Pruebas Genéticas , Repeticiones de Microsatélite , Expansión de las Repeticiones de ADN , Ubiquitina-Proteína Ligasas/genética
10.
J Surg Case Rep ; 2023(3): rjad111, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908691

RESUMEN

Primary non-Hodgkin's lymphoma (NHL) of the urinary bladder is a rare event, with diffuse large B-cell lymphoma (DLBCL) being the most common form of NHL and urinary bladder lymphoma. It is an aggressive tumour with a poor prognosis if not recognised and treated early. The diagnosis is supported by radiological imaging and confirmed by histology, which shows the characteristic morphology of this lesion with further immunohistochemical analysis. Here we present a case of Epstein-Barr virus-positive DLBCL confirmed by an immunohistochemistry panel, along with a brief review of the literature focusing on diagnosis, treatment and outcome of this rare tumour.

11.
Lancet Oncol ; 24(1): 91-106, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436516

RESUMEN

BACKGROUND: Truncating pathogenic or likely pathogenic variants of CDH1 cause hereditary diffuse gastric cancer (HDGC), a tumour risk syndrome that predisposes carrier individuals to diffuse gastric and lobular breast cancer. Rare CDH1 missense variants are often classified as variants of unknown significance. We conducted a genotype-phenotype analysis in families carrying rare CDH1 variants, comparing cancer spectrum in carriers of pathogenic or likely pathogenic variants (PV/LPV; analysed jointly) or missense variants of unknown significance, assessing the frequency of families with lobular breast cancer among PV/LPV carrier families, and testing the performance of lobular breast cancer-expanded criteria for CDH1 testing. METHODS: This genotype-first study used retrospective diagnostic and clinical data from 854 carriers of 398 rare CDH1 variants and 1021 relatives, irrespective of HDGC clinical criteria, from 29 institutions in ten member-countries of the European Reference Network on Tumour Risk Syndromes (ERN GENTURIS). Data were collected from Oct 1, 2018, to Sept 20, 2022. Variants were classified by molecular type and clinical actionability with the American College of Medical Genetics and Association for Molecular Pathology CDH1 guidelines (version 2). Families were categorised by whether they fulfilled the 2015 and 2020 HDGC clinical criteria. Genotype-phenotype associations were analysed by Student's t test, Kruskal-Wallis, χ2, and multivariable logistic regression models. Performance of HDGC clinical criteria sets were assessed with an equivalence test and Youden index, and the areas under the receiver operating characteristic curves were compared by Z test. FINDINGS: From 1971 phenotypes (contributed by 854 probands and 1021 relatives aged 1-93 years), 460 had gastric and breast cancer histology available. CDH1 truncating PV/LPVs occurred in 176 (21%) of 854 families and missense variants of unknown significance in 169 (20%) families. Multivariable logistic regression comparing phenotypes occurring in families carrying PV/LPVs or missense variants of unknown significance showed that lobular breast cancer had the greatest positive association with the presence of PV/LPVs (odds ratio 12·39 [95% CI 2·66-57·74], p=0·0014), followed by diffuse gastric cancer (8·00 [2·18-29·39], p=0·0017) and gastric cancer (7·81 [2·03-29·96], p=0·0027). 136 (77%) of 176 families carrying PV/LPVs fulfilled the 2015 HDGC criteria. Of the remaining 40 (23%) families, who did not fulfil the 2015 criteria, 11 fulfilled the 2020 HDGC criteria, and 18 had lobular breast cancer only or lobular breast cancer and gastric cancer, but did not meet the 2020 criteria. No specific CDH1 variant was found to predispose individuals specifically to lobular breast cancer, although 12 (7%) of 176 PV/LPV carrier families had lobular breast cancer only. Addition of three new lobular breast cancer-centred criteria improved testing sensitivity while retaining high specificity. The probability of finding CDH1 PV/LPVs in patients fulfilling the lobular breast cancer-expanded criteria, compared with the 2020 criteria, increased significantly (AUC 0·92 vs 0·88; Z score 3·54; p=0·0004). INTERPRETATION: CDH1 PV/LPVs were positively associated with HDGC-related phenotypes (lobular breast cancer, diffuse gastric cancer, and gastric cancer), and no evidence for a positive association with these phenotypes was found for CDH1 missense variants of unknown significance. CDH1 PV/LPVs occurred often in families with lobular breast cancer who did not fulfil the 2020 HDGC criteria, supporting the expansion of lobular breast cancer-centred criteria. FUNDING: European Reference Network on Genetic Tumour Risk Syndromes, European Regional Development Fund, Fundação para a Ciência e a Tecnologia (Portugal), Cancer Research UK, and European Union's Horizon 2020 research and innovation programme.


Asunto(s)
Neoplasias de la Mama , Carcinoma Lobular , Neoplasias Gástricas , Femenino , Humanos , Antígenos CD/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cadherinas/genética , Predisposición Genética a la Enfermedad , Genotipo , Células Germinativas/patología , Mutación de Línea Germinal , Linaje , Fenotipo , Estudios Retrospectivos , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/genética , Mutación Missense
12.
Eur J Cancer Prev ; 32(2): 113-118, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36134613

RESUMEN

OBJECTIVE: Lynch syndrome is caused by germline mutations in the mismatch repair (MMR) genes, such as the PMS2 gene, and is characterised by a familial accumulation of colorectal cancer. The penetrance of cancer in PMS2 carriers is still not fully elucidated as a colorectal cancer risk has been shown to vary between PMS2 carriers, suggesting the presence of risk modifiers. METHODS: Whole exome sequencing was performed in a Swedish family carrying a PMS2 missense mutation [c.2113G>A, p.(Glu705Lys)]. Thirteen genetic sequence variants were further selected and analysed in a case-control study (724 cases and 711 controls). RESULTS: The most interesting variant was an 18 bp deletion in gene BAG1. BAG1 has been linked to colorectal tumour progression with poor prognosis and is thought to promote colorectal tumour cell survival through increased NF-κB activity. CONCLUSIONS: We conclude the genetic architecture behind the incomplete penetrance of PMS2 is complicated and must be assessed in a genome wide manner using large families and multifactorial analysis.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Secuenciación del Exoma , Penetrancia , Suecia/epidemiología , Estudios de Casos y Controles , Mutación , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Reparación de la Incompatibilidad de ADN , Homólogo 1 de la Proteína MutL/genética
13.
Endocr Connect ; 11(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228316

RESUMEN

Differences of sex development and maturation (SDM) represent a heterogeneous puzzle of rare conditions with a large genetic component whose management and treatment could be improved by an accurate classification of underlying molecular conditions, and next-generation sequencing (NGS) should represent the most appropriate approach. Therefore, we conducted a survey dedicated to the use and potential outcomes of NGS for SDM disorders diagnosis among the 53 health care providers (HCP) of the European Reference Network for rare endocrine conditions. The response rate was 49% with a total of 26 HCPs from 13 countries. All HCPs, except 1, performed NGS investigations for SDM disorders on 6720 patients, 3764 (56%) with differences of sex development (DSD), including 811 unexplained primary ovarian insufficiency, and 2956 (44%) with congenital hypogonadotropic hypogonadism (CHH). The approaches varied from targeted analysis of custom gene panels (range: 11-490 genes) in 81.5% of cases or whole exome sequencing with the extraction of a virtual panel in the remaining cases. These analyses were performed for diagnostic purposes in 21 HCPs, supported by the National Health Systems in 16 cases. The likelihood of finding a variant ranged between 7 and 60%, mainly depending upon the number of analysed genes or criteria used for reporting, most HCPs also reporting variants of uncertain significance. These data illustrate the status of genetic diagnosis of DSD and CHH across Europe. In most countries, these analyses are performed for diagnostic purposes, yielding highly variable results, thus suggesting the need for harmonization and general improvements of NGS approaches.

14.
Genet Med ; 24(11): 2296-2307, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36066546

RESUMEN

PURPOSE: Individuals with intellectual disability (ID) and/or neurodevelopment disorders (NDDs) are currently investigated with several different approaches in clinical genetic diagnostics. METHODS: We compared the results from 3 diagnostic pipelines in patients with ID/NDD: genome sequencing (GS) first (N = 100), GS as a secondary test (N = 129), or chromosomal microarray (CMA) with or without FMR1 analysis (N = 421). RESULTS: The diagnostic yield was 35% (GS-first), 26% (GS as a secondary test), and 11% (CMA/FMR1). Notably, the age of diagnosis was delayed by 1 year when GS was performed as a secondary test and the cost per diagnosed individual was 36% lower with GS first than with CMA/FMR1. Furthermore, 91% of those with a negative result after CMA/FMR1 analysis (338 individuals) have not yet been referred for additional genetic testing and remain undiagnosed. CONCLUSION: Our findings strongly suggest that genome analysis outperforms other testing strategies and should replace traditional CMA and FMR1 analysis as a first-line genetic test in individuals with ID/NDD. GS is a sensitive, time- and cost-effective method that results in a confirmed molecular diagnosis in 35% of all referred patients.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidades del Desarrollo/genética , Pruebas Genéticas/métodos , Análisis por Micromatrices , Trastornos del Neurodesarrollo/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
15.
Kidney360 ; 3(5): 900-909, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-36128480

RESUMEN

Background: Despite increasing recognition that CKD may have underlyi ng genetic causes, genetic testing remains limited. This study evaluated the diagnostic yield and phenotypic spectrum of CKD in individuals tested through the KIDNEYCODE sponsored genetic testing program. Methods: Unrelated individuals who received panel testing (17 genes) through the KIDNEYCODE sponsored genetic testing program were included. Individuals had to meet at least one of the following eligibility criteria: eGFR ≤90 ml/min per 1.73m2 and hematuria or a family history of kidney disease; or suspected/biopsy-confirmed Alport syndrome or FSGS in tested individuals or relatives. Results: Among 859 individuals, 234 (27%) had molecular diagnoses in genes associated with Alport syndrome (n=209), FSGS (n=12), polycystic kidney disease (n=6), and other disorders (n=8). Among those with positive findings in a COL4A gene, the majority were in COL4A5 (n=157, 72 hemizygous male and 85 heterozygous female individuals). A positive family history of CKD, regardless of whether clinical features were reported, was more predictive of a positive finding than was the presence of clinical features alone. For the 248 individuals who had kidney biopsies, a molecular diagnosis was returned for 49 individuals (20%). Most (n=41) individuals had a molecular diagnosis in a COL4A gene, 25 of whom had a previous Alport syndrome clinical diagnosis, and the remaining 16 had previous clinical diagnoses including FSGS (n=2), thin basement membrane disease (n=9), and hematuria (n=1). In total, 491 individuals had a previous clinical diagnosis, 148 (30%) of whom received a molecular diagnosis, the majority (89%, n=131) of which were concordant. Conclusions: Although skewed to identify individuals with Alport syndrome, these findings support the need to improve access to genetic testing for patients with CKD-particularly in the context of family history of kidney disease, hematuria, and hearing loss.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Nefritis Hereditaria , Insuficiencia Renal Crónica , Colágeno Tipo IV/genética , Femenino , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Hematuria/diagnóstico , Humanos , Masculino , Nefritis Hereditaria/diagnóstico , Insuficiencia Renal Crónica/diagnóstico
16.
Genes Chromosomes Cancer ; 61(10): 585-591, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35430768

RESUMEN

Approximately 5% of patients with colorectal cancer (CRC) have a Mendelian predisposition for the disease. Identification of the disease-causing genetic variant enables carrier testing and tailored cancer prevention within affected families. To determine the panorama and genetic variation of Mendelian CRC syndromes among referrals at the cancer genetics clinics in Sweden, 850 patients clinically selected for CRC genetic investigation were included in a prospective study that tested for all major hereditary polyposis and nonpolyposis CRC conditions. Genetically defined syndromes were diagnosed in 11% of the patients. Lynch syndrome was predominant (n = 73) followed by familial adenomatous polyposis (n = 12) and MUTYH-associated polyposis (n = 8); the latter of which two patients presented with CRC before polyposis was evident. One patient with a history of adolescent-onset CRC and polyposis had biallelic disease-causing variants diagnostic for constitutional mismatch repair deficiency syndrome. Post-study review of detected variants of unknown clinical significance (n = 129) resulted in the reclassification of variants as likely benign (n = 59) or as diagnostic for Lynch syndrome (n = 2). Our results reveal the panorama of Mendelian CRC syndromes at the cancer genetics clinics in Sweden and show that unified testing for polyposis and nonpolyposis CRC conditions as well as regular reexamination of sequence data improve the diagnostic yield.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Adolescente , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Humanos , Estudios Prospectivos , Síndrome
17.
Mol Genet Genomic Med ; 10(4): e1880, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35118825

RESUMEN

BACKGROUND: De novo variants are a common cause to rare intellectual disability syndromes, associated with low recurrence risk. However, when such variants occur pre-zygotically in parental germ cells, the recurrence risk might be higher. Still, the recurrence risk estimates are mainly based on empirical data and the prevalence of germline mosaicism is often unknown. METHODS: To establish the prevalence of mosaicism in parents of children with intellectual disability syndromes caused by de novo variants, we performed droplet digital PCR on DNA extracted from blood (43 trios), and sperm (31 fathers). RESULTS: We detected low-level mosaicism in sperm-derived DNA but not in blood in the father of a child with Kleefstra syndrome caused by an EHMT1 variant. Additionally, we found a higher level of paternal mosaicism in sperm compared to blood in the father of a child with Gillespie syndrome caused by an ITPR1 variant. CONCLUSION: By employing droplet digital PCR, we detected paternal germline mosaicism in two intellectual disability syndromes. In both cases, the mosaicism level was higher in sperm than blood, indicating that analysis of blood alone may underestimate germline mosaicism. Therefore, sperm analysis can be clinically useful to establish the recurrence risk for parents and improve genetic counselling.


Asunto(s)
Discapacidad Intelectual , Mosaicismo , Niño , ADN/genética , Células Germinativas , Humanos , Discapacidad Intelectual/genética , Síndrome
18.
PLoS One ; 17(2): e0264056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176117

RESUMEN

Birt-Hogg-Dube syndrome (BHDS) (MIM: 135150) is a rare autosomal dominant disorder with variable penetrance, caused by pathogenic variants in the FLCN gene. Only a few hundreds of families have so far been described in the literature. Patients with BHDS present with three distinct symptoms: fibrofolliculomas, pneumothorax due to lung cyst formation, and increased lifetime risk of kidney tumours. The aim of the current study was to estimate the incidence of BHDS in the Swedish population and further describe the clinical manifestations and their frequency. Splice variant c.779+1G>T was the most common pathogenic variant, found in 57% of the families, suggesting this may be a founder mutation in the Swedish population. This was further investigated using haplotype analysis in 50 families that shared a common haplotype. Moreover, according to gnomAD the carrier frequency of the c.779+1G>T variant has been estimated to be 1/3265 in the Swedish population, however our data suggest that the carrier frequency in the Swedish population may be significantly higher. These findings should raise awareness among physicians of different specialties to patients presenting with fibrofolliculomas, pneumothorax and/or kidney tumours. We also stress the importance of consensus recommendations regarding diagnosis and clinical management of this, not that uncommon, syndrome.


Asunto(s)
Síndrome de Birt-Hogg-Dubé/patología , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética , Adulto , Síndrome de Birt-Hogg-Dubé/epidemiología , Síndrome de Birt-Hogg-Dubé/genética , Femenino , Humanos , Masculino , Linaje , Estudios Retrospectivos , Suecia/epidemiología
19.
Hum Mutat ; 43(6): 708-716, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35192731

RESUMEN

The amount of data available from genomic medicine has revolutionized the approach to identify the determinants underlying many rare diseases. The task of confirming a genotype-phenotype causality for a patient affected with a rare genetic disease is often challenging. In this context, the establishment of the Matchmaker Exchange (MME) network has assumed a pivotal role in bridging heterogeneous patient information stored on different medical and research servers. MME has made it possible to solve rare disease cases by "matching" the genotypic and phenotypic characteristics of a patient of interest with patient data available at other clinical facilities participating in the network. Here, we present PatientMatcher (https://github.com/Clinical-Genomics/patientMatcher), an open-source Python and MongoDB-based software solution developed by Clinical Genomics facility at the Science for Life Laboratory in Stockholm. PatientMatcher is designed as a standalone MME server, but can easily communicate via REST API with external applications managing genetic analyses and patient data. The MME node is being implemented in clinical routine in collaboration with the Genomic Medicine Center Karolinska at the Karolinska University Hospital. PatientMatcher is written to implement the MME API and provides several customizable settings, including a custom-fit similarity score algorithm and adjustable matching results notifications.


Asunto(s)
Enfermedades Raras , Enfermedades no Diagnosticadas , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Difusión de la Información/métodos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Programas Informáticos
20.
J Med Genet ; 59(2): 141-146, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33208384

RESUMEN

BACKGROUND: Germline pathogenic variants in DICER1 cause DICER1 syndrome, an autosomal dominant, pleiotropic tumour predisposition syndrome with variable expressivity and reduced penetrance for specific dysplastic and neoplastic lesions. Recently, a syndrome with the acronym GLOW (Global developmental delay, Lung cysts, Overgrowth, Wilms tumour) was described in two children with mosaic missense mutations in hotspot residues of the DICER1 RNase IIIb domain. METHODS: Whole genome sequencing, exome sequencing, Sanger sequencing, digital PCR and a review of Wilms tumours with DICER1 RNase III domain mutations were performed. RESULTS: A de novo heterozygous c.4031C>T (p.S1344L) variant in the sequence encoding the RNase IIIa domain of DICER1 was detected. Clinical investigations revealed a phenotype that resembles the GLOW subphenotype of DICER1 syndrome. CONCLUSION: The phenotypic overlap between patients with p.S1344L mutation and GLOW syndrome provide clinical support for recent discoveries that RNase IIIa-Ser1344 site mutations impede miRNA-5p biogenesis analogous to DICER1 hotspot mutations in the RNase IIIb domain. We show that an individual with a heterozygous germline p.S1344L mutation has a severe form of DICER1 syndrome ('DICER1 syndrome plus'), with notable features of intellectual disability, macrocephaly, physical abnormalities, Wilms tumour and a well-differentiated fetal adenocarcinoma of the lung.


Asunto(s)
Anomalías Múltiples/genética , ARN Helicasas DEAD-box/genética , Ribonucleasa III/genética , Anomalías Múltiples/patología , ARN Helicasas DEAD-box/química , Mutación de Línea Germinal , Humanos , Recién Nacido , Masculino , Fenotipo , Dominios Proteicos/genética , Ribonucleasa III/química , Síndrome , Secuenciación Completa del Genoma , Tumor de Wilms/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...