Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Leukemia ; 29(5): 1177-85, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25428260

RESUMEN

To characterise the genetics of splenic marginal zone lymphoma (SMZL), we performed whole exome sequencing of 16 cases and identified novel recurrent inactivating mutations in Kruppel-like factor 2 (KLF2), a gene whose deficiency was previously shown to cause splenic marginal zone hyperplasia in mice. KLF2 mutation was found in 40 (42%) of 96 SMZLs, but rarely in other B-cell lymphomas. The majority of KLF2 mutations were frameshift indels or nonsense changes, with missense mutations clustered in the C-terminal zinc finger domains. Functional assays showed that these mutations inactivated the ability of KLF2 to suppress NF-κB activation by TLR, BCR, BAFFR and TNFR signalling. Further extensive investigations revealed common and distinct genetic changes between SMZL with and without KLF2 mutation. IGHV1-2 rearrangement and 7q deletion were primarily seen in SMZL with KLF2 mutation, while MYD88 and TP53 mutations were nearly exclusively found in those without KLF2 mutation. NOTCH2, TRAF3, TNFAIP3 and CARD11 mutations were observed in SMZL both with and without KLF2 mutation. Taken together, KLF2 mutation is the most common genetic change in SMZL and identifies a subset with a distinct genotype characterised by multi-genetic changes. These different genetic changes may deregulate various signalling pathways and generate cooperative oncogenic properties, thereby contributing to lymphomagenesis.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/genética , Linfoma de Células B de la Zona Marginal/genética , Mutación , Neoplasias del Bazo/genética , Biopsia , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al ADN/metabolismo , Exoma , Mutación del Sistema de Lectura , Reordenamiento Génico de Cadena Pesada de Linfocito B , Variación Genética , Genotipo , Guanilato Ciclasa/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma/metabolismo , Linfoma de Células B de la Zona Marginal/diagnóstico , Mutación Missense , Proteínas Nucleares/metabolismo , Reacción en Cadena de la Polimerasa , Receptor Notch2/metabolismo , Recurrencia , Análisis de Secuencia de ADN , Transducción de Señal , Neoplasias del Bazo/diagnóstico , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa
2.
Oncogene ; 30(32): 3537-48, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21423202

RESUMEN

Glioblastoma multiforme is one of the most devastating cancers and presents unique challenges to therapy because of its aggressive behavior. Cancer-initiating or progenitor cells have been described to be the only cell population with tumorigenic capacity in glioblastoma. Therefore, effective therapeutic strategies targeting these cells or the early precursors may be beneficial. We have established different cultures of glioblastoma-initiating cells (GICs) derived from surgical specimens and found that, after induction of differentiation, the NFκB transcriptional pathway was activated, as determined by analyzing key proteins such as p65 and IκB and the upregulation of a number of target genes. We also showed that blockade of nuclear factor (NF)κB signaling in differentiating GICs by different genetic strategies or treatment with small-molecule inhibitors, promoted replication arrest and senescence. This effect was partly mediated by reduced levels of the NFκB target gene cyclin D1, because its downregulation by RNA interference reproduced a similar phenotype. Furthermore, these results were confirmed in a xenograft model. Intravenous treatment of immunodeficient mice bearing human GIC-derived tumors with a novel small-molecule inhibitor of the NFκB pathway induced senescence of tumor cells but no ultrastructural alterations of the brain parenchyma were detected. These findings reveal that activation of NFκB may keep differentiating GICs from acquiring a mature postmitotic phenotype, thus allowing cell proliferation, and support the rationale for therapeutic strategies aimed to promote premature senescence of differentiating GICs by blocking key factors within the NFκB pathway.


Asunto(s)
Senescencia Celular/genética , Glioblastoma/genética , FN-kappa B/genética , Transducción de Señal/genética , Animales , Western Blotting , Carbazoles/farmacología , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Femenino , Perfilación de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glicósidos/farmacología , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Nitrilos/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Sulfonas/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Biochem Soc Trans ; 34(Pt 1): 108-10, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16417495

RESUMEN

Nitrate respiration by the N(2)-fixing symbiotic bacteria Bradyrhizobium japonicum USDA110 is mediated by a Nap (periplasmic nitrate reductase) encoded by the napEDABC genes. Expression of a transcriptional fusion of the nap promoter region to the reporter gene lacZ, P(napE)-lacZ, was very low in aerobically grown cells of USDA110, but expression was induced approx. 3-fold when the cells were cultured under microaerobic conditions, and 12-fold when nitrate was added to the microaerobic incubation medium. The P(napE)-lacZ fusion was not expressed in the fixL 7403, fixJ 7360 and fixK(2) 9043 mutant strains. Microaerobic induction of the P(napE)-lacZ fusion was retained in the nnrR 8678 mutant, but no increase in beta-galactosidase activity was observed upon nitrate addition. Western-blot and Methyl Viologen-dependent nitrate reductase activity assays showed that synthesis and activity of the catalytic NapA subunit in USDA110 was similar to that in the napC 0906 and nirK GRK308 mutant strains incubated microaerobically with nitrate. These results suggest that nitrate and nitrite, which are not reduced by the napC 0906 and nirK GRK308 mutant cells respectively, induced the synthesis and activity of NapA; conversely, formation of endogenous NO was not required for induction of Nap expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bradyrhizobium/genética , Regulación Bacteriana de la Expresión Génica , Hemoproteínas/metabolismo , Nitrato Reductasas/genética , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Bradyrhizobium/enzimología , Hemoproteínas/genética , Histidina Quinasa , Nitrato Reductasas/metabolismo , Nitratos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Transactivadores/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
4.
Biochem Soc Trans ; 33(Pt 1): 141-4, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15667287

RESUMEN

Denitrification is an alternative form of respiration in which bacteria sequentially reduce nitrate or nitrite to nitrogen gas by the intermediates nitric oxide and nitrous oxide when oxygen concentrations are limiting. In Bradyrhizobium japonicum, the N(2)-fixing microsymbiont of soya beans, denitrification depends on the napEDABC, nirK, norCBQD, and nosRZDFYLX gene clusters encoding nitrate-, nitrite-, nitric oxide- and nitrous oxide-reductase respectively. Mutational analysis of the B. japonicum nap genes has demonstrated that the periplasmic nitrate reductase is the only enzyme responsible for nitrate respiration in this bacterium. Regulatory studies using transcriptional lacZ fusions to the nirK, norCBQD and nosRZDFYLX promoter region indicated that microaerobic induction of these promoters is dependent on the fixLJ and fixK(2) genes whose products form the FixLJ-FixK(2) regulatory cascade. Besides FixK(2), another protein, nitrite and nitric oxide respiratory regulator, has been shown to be required for N-oxide regulation of the B. japonicum nirK and norCBQD genes. Thus nitrite and nitric oxide respiratory regulator adds to the FixLJ-FixK(2) cascade an additional control level which integrates the N-oxide signal that is critical for maximal induction of the B. japonicum denitrification genes. However, the identity of the signalling molecule and the sensing mechanism remains unknown.


Asunto(s)
Bradyrhizobium/metabolismo , Nitritos/metabolismo , Fijación del Nitrógeno , Simbiosis , Bradyrhizobium/enzimología , Bradyrhizobium/genética , Genes Bacterianos , Nitrito Reductasas/genética , Oxidorreductasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA