Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38592435

RESUMEN

Colloidal quantum dots/graphene (QD/Gr) nanohybrids have been studied intensively for photodetection in a broadband spectrum including ultraviolet, visible, near-infrared, and shortwave infrared (UV-vis-NIR-SWIR). Since the optoelectronic process in the QD/Gr nanohybrid relies on the photogenerated charge carrier transfer from QDs to graphene, understanding the role of the QD-QD and QD-Gr interfaces is imperative to the QD/Gr nanohybrid photodetection. Herein, a systematic study is carried out to probe the effect of these interfaces on the noise, photoresponse, and specific detectivity in the UV-vis-NIR-SWIR spectrum. Interestingly, the photoresponse has been found to be negligible without a 3-mercaptopropionic acid (MPA) ligand exchange, moderate with a single ligand exchange after all QD layers are deposited on graphene, and maximum if it is performed after each QD layer deposition up to five layers of total QD thickness of 260-280 nm. Furthermore, exposure of graphene to C-band UV (UVC) for a short period of 4-5 min before QD deposition leads to improved photoresponse via removal of polar molecules at the QD/Gr interface. With the combination of the MPA ligand exchange and UVC exposure, optimal optoelectronic properties can be obtained on the PbS QD/Gr nanohybrids with high specific detectivity up to 2.6 × 1011, 1.5 × 1011, 5 × 1010, and 1.9 × 109 Jones at 400, 550, 1000, and 1700 nm, respectively, making the nanohybrids promising for broadband photodetection.

2.
Nano Lett ; 23(10): 4415-4422, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37140477

RESUMEN

All-solid-state batteries with lithium metal anodes hold great potential for high-energy battery applications. However, forming and maintaining stable solid-solid contact between the lithium anode and solid electrolyte remains a major challenge. One promising solution is the use of a silver-carbon (Ag-C) interlayer, but its chemomechanical properties and impact on interface stabilities need to be comprehensively explored. Here, we examine the function of Ag-C interlayers in addressing interfacial challenges using various cell configurations. Experiments show that the interlayer improves interfacial mechanical contact, leading to a uniform current distribution and suppressing lithium dendrite growth. Furthermore, the interlayer regulates lithium deposition in the presence of Ag particles via improved Li diffusivity. The sheet-type cells with the interlayer achieve a high energy density of 514.3 Wh L-1 and an average Coulombic efficiency of 99.97% over 500 cycles. This work provides insights into the benefits of using Ag-C interlayers for enhancing the performance of all-solid-state batteries.

3.
ACS Appl Mater Interfaces ; 14(4): 5797-5806, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35043632

RESUMEN

Single-step, single-precursor synthesis of nitrogen-doped graphene oxide (N-GO) was demonstrated in this work. By choosing aniline as the sole source of carbon and nitrogen, N-GO films were fabricated using microwave plasma at a power as low as 80 W in atmospheric conditions. The aniline vapor dissociated under plasma formed islands of N-GO nanosheets on the substrates or walls of the quartz deposition chamber. The interplanar spacing in the pristine N-GO films was observed to be lower than that of GO films, which indicated a lower concentration of oxygen and other species present in the space between the N-GO layers. The as-fabricated N-GO demonstrated superior antiscaling and algicidal properties that are deemed imperative for water purification applications.

4.
Small ; 18(11): e2105009, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35060296

RESUMEN

The integration of highly luminescent CsPbBr3 quantum dots on nanowire waveguides has enormous potential applications in nanophotonics, optical sensing, and quantum communications. On the other hand, CsPb2 Br5 nanowires have also attracted a lot of attention due to their unique water stability and controversial luminescent property. Here, the growth of CsPbBr3 nanocrystals on CsPb2 Br5 nanowires is reported first by simply immersing CsPbBr3 powder into pure water, CsPbBr3- γ Xγ (X = Cl, I) nanocrystals on CsPb2 Br5 -γ Xγ nanowires are then synthesized for tunable light sources. Systematic structure and morphology studies, including in situ monitoring, reveal that CsPbBr3 powder is first converted to CsPb2 Br5 microplatelets in water, followed by morphological transformation from CsPb2 Br5 microplatelets to nanowires, which is a kinetic dissolution-recrystallization process controlled by electrolytic dissociation and supersaturation of CsPb2 Br5 . CsPbBr3 nanocrystals are spontaneously formed on CsPb2 Br5 nanowires when nanowires are collected from the aqueous solution. Raman spectroscopy, combined photoluminescence, and SEM imaging confirm that the bright emission originates from CsPbBr3 -γ Xγ nanocrystals while CsPb2 Br5 -γ Xγ nanowires are transparent waveguides. The intimate integration of nanoscale light sources with a nanowire waveguide is demonstrated through the observation of the wave guiding of light from nanocrystals and Fabry-Perot interference modes of the nanowire cavity.

5.
Sci Adv ; 7(17)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33893098

RESUMEN

The chemical synthesis of monoatomic metallic copper is unfavorable and requires inert or reductive conditions and the use of toxic reagents. Here, we report the environmental extraction and conversion of CuSO4 ions into single-atom zero-valent copper (Cu0) by a copper-resistant bacterium isolated from a copper mine in Brazil. Furthermore, the biosynthetic mechanism of Cu0 production is proposed via proteomics analysis. This microbial conversion is carried out naturally under aerobic conditions eliminating toxic solvents. One of the most advanced commercially available transmission electron microscopy systems on the market (NeoArm) was used to demonstrate the abundant intracellular synthesis of single-atom zero-valent copper by this bacterium. This finding shows that microbes in acid mine drainages can naturally extract metal ions, such as copper, and transform them into a valuable commodity.

6.
Nanoscale Adv ; 3(6): 1747-1757, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36132560

RESUMEN

Studies on intercalation or substitution of atoms into layered two-dimensional (2D) materials are rapidly expanding and gaining significant consideration due to their importance in electronics, catalysts, batteries, sensors, etc. In this manuscript, we report a straightforward method to create sulphur (S) deficient molybdenum (Mo) sulfide (MoS2-x ) structures and substitute them with zerovalent copper (Cu) atoms using a colloidal synthesis method. The synthesized materials were studied using several techniques to understand the proportion and position of copper atoms and the effect of copper functionalization. Specifically, the impact of change in the ratio of Cu : S and the hydrogen evolution reaction (HER) activity of the derived materials were evaluated. This technique paves the way for the synthesis of various functionalized 2D materials with a significant impact on their physical and chemical behavior making them potential candidates for catalysis and several other applications such as energy storage and the development of numerous functional devices.

7.
ACS Nano ; 15(1): 447-454, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33381965

RESUMEN

Graphene is a promising material for many biointerface applications in engineering, medical, and life-science domains. Here, we explore the protection ability of graphene atomic layers to metals exposed to aggressive sulfate-reducing bacteria implicated in corrosion. Although the graphene layers on copper (Cu) surfaces did not prevent the bacterial attachment and biofilm growth, they effectively restricted the biogenic sulfide attack. Interestingly, single-layered graphene (SLG) worsened the biogenic sulfide attack by 5-fold compared to bare Cu. In contrast, multilayered graphene (MLG) on Cu restricted the attack by 10-fold and 1.4-fold compared to SLG-Cu and bare Cu, respectively. We combined experimental and computational studies to discern the anomalous behavior of SLG-Cu compared to MLG-Cu. We also report that MLG on Ni offers superior protection ability compared to SLG. Finally, we demonstrate the effect of defects, including double vacancy defects and grain boundaries on the protection ability of atomic graphene layers.


Asunto(s)
Desulfovibrio , Grafito , Biopelículas , Cobre , Corrosión
8.
ACS Appl Mater Interfaces ; 12(42): 47368-47376, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32930564

RESUMEN

Lithium-sulfur batteries have shown great promise as next-generation high energy density power sources, but their commercial applications are hindered by short battery cycle life arising from the dissolution and shuttling of polysulfides. To address this shortcoming, we prepared two types of semihollow core-shell nanoparticles in which (1) elemental sulfur is encapsulated within a porous silica shell (S@SiO2) and (2) elemental sulfur is encapsulated within a porous silica shell where the inner surface of the shell is decorated with small Au nanoparticles (S@Au@SiO2). These core-shell nanoparticles, both ∼300 nm in diameter, were generated from analogous zinc sulfide-based core-shell nanoparticles (ZnS@SiO2 and ZnS@Au@SiO2, respectively) by converting the ZnS cores to elemental sulfur upon treatment with Fe(NO3)3. With a high surface area and strong host-polysulfide interaction, the SiO2 shells effectively trap the polysulfides; moreover, the internal void space of these nanostructures accommodates the volume expansion of the sulfur core upon lithiation. By decorating ∼5-7 nm Au nanoparticles evenly on the inner surface of the porous SiO2 shells (i.e., S@Au@SiO2), electron transport is enhanced, with consequently enhanced sulfur conversion kinetics at high current rates. Studies of battery performance showed that the S@SiO2 cathode can deliver an initial capacity of 1153 mA h g-1 under 0.2 C and retain 816 mA h g-1 after 100 cycles. More importantly, the Au-decorated S@Au@SiO2 cathode can deliver a high capacity of 500 mA h g-1 under 5 C.

9.
ACS Appl Mater Interfaces ; 12(26): 29594-29604, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32500707

RESUMEN

Graphene and its derivatives have acquired substantial research attention in recent years because of their wide range of potential applications. Implementing sustainable technologies for fabricating these functional nanomaterials is becoming increasingly apparent, and therefore, a wide spectrum of naturally derived precursors has been identified and reformed through various established techniques for the purpose. Nevertheless, most of these methods could only be considered partially sustainable because of their complexity as well as high energy, time, and resource requirements. Here, we report the fabrication of carbon nano-onion-interspersed vertically oriented multilayer graphene nanosheets through a single-step, environmentally benign radio frequency plasma-enhanced chemical vapor deposition process from a low-cost carbon feedstock, the oil from the peel of Citrus sinensis orange fruits. C. sinensis essential oil is a volatile aroma liquid principally composed of nonsynthetic hydrocarbon limonene. Transmission electron microscopy studies on the structure unveiled the presence of hollow quasi-spherical carbon nano-onion-like structures incorporated within graphene layers. The as-fabricated nano-onion-incorporated graphene films exhibited a highly hydrophobic nature showing a water contact angle of up to 1290. The surface energies of these films were in the range of 41 to 35 mJ·m-2. Moreover, a chemiresistive sensor directly fabricated using C. sinensis-derived onion-structured graphene showed a p-type semiconductor nature and a promising response to acetone at room temperature. With its unique morphology, surface properties, and electrical characteristics, this material is expected to be useful for a wide range of applications.


Asunto(s)
Citrus sinensis/química , Grafito/química , Nanoestructuras/química , Nanotecnología/métodos , Extractos Vegetales/química , Humectabilidad
10.
ACS Appl Mater Interfaces ; 11(31): 27697-27705, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31291081

RESUMEN

The design of new and improved catalysts is an exciting field and is being constantly improved for the development of economically, highly efficient material and for the possible replacement of platinum (Pt)-based catalysts. In this, carbon-based materials play a pivotal role due to their easy availability and environment friendliness. Herein, we report a simple technique to synthesize layered, nitrogen-doped, porous carbon and activated carbons from an abundant petroleum asphaltene. The derived nitrogen-doped carbons were found to possess a graphene-like nanosheet (N-GNS) texture with a significant percentage of nitrogen embedded into the porous carbon skeleton. On the other hand, the activated porous carbon displayed a surface area (SA) of 2824 m2/g, which is significantly higher when compared to the nitrogen-doped carbons (SA of ∼243 m2/g). However, the nonactivated N-GNS were considered as an attractive candidate due to their high electrochemical active surface area, the presence of a mixture of porous structures, uniform layers, and effective doping of nitrogen atoms within the carbon matrix. Importantly, the hydrogen evolution reaction activity of the derived N-GNS sample illustrates a significant catalytic performance when compared to that of other nonfunctionalized carbons. Our current finding demonstrates the possibility of converting the asphaltene wastes into a high-value-functionalized porous carbon for catalytic applications.

11.
Adv Mater ; 31(33): e1902492, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31231895

RESUMEN

Since the first report of the green emission of 2D all-inorganic CsPb2 Br5 , its bandgap and photoluminescence (PL) origin have generated intense debate and remained controversial. After the discovery that PL centers occupy only specific morphological structures in CsPb2 Br5 , a two-step highly sensitive and noninvasive optical technique is employed to resolve the controversy. Same-spot Raman-PL as a static property-structure probe reveals that CsPbBr3 nanocrystals are contributing to the green emission of CsPb2 Br5 ; pressure-dependent Raman-PL with a diamond anvil cell as a dynamic probe further rules out point defects such as Br vacancies as an alternative mechanism. Optical absorption under hydrostatic pressure shows that the bandgap of CsPb2 Br5 is 0.3-0.4 eV higher than previously reported values and remains nearly constant with pressure up to 2 GPa in good agreement with full-fledged density functional theory (DFT) calculations. Using ion exchange of Br with Cl and I, it is further proved that CsPbBr3- x Xx (X = Cl or I) is responsible for the strong visible PL in CsPb2 Br5- x Xx . This experimental approach is applicable to all PL-active materials to distinguish intrinsic defects from extrinsic nanocrystals, and the findings pave the way for new design and development of highly efficient optoelectronic devices based on all-inorganic lead halides.

12.
Sci Adv ; 5(5): eaau9785, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31093523

RESUMEN

Upcoming advancements in flexible technology require mechanically compliant dielectric materials. Current dielectrics have either high dielectric constant, K (e.g., metal oxides) or good flexibility (e.g., polymers). Here, we achieve a golden mean of these properties and obtain a lightweight, viscoelastic, high-K dielectric material by combining two nonpolar, brittle constituents, namely, sulfur (S) and selenium (Se). This S-Se alloy retains polymer-like mechanical flexibility along with a dielectric strength (40 kV/mm) and a high dielectric constant (K = 74 at 1 MHz) similar to those of established metal oxides. Our theoretical model suggests that the principal reason is the strong dipole moment generated due to the unique structural orientation between S and Se atoms. The S-Se alloys can bridge the chasm between mechanically soft and high-K dielectric materials toward several flexible device applications.

13.
Chemistry ; 25(23): 5893-5898, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30854711

RESUMEN

Zeolite crystals can be used as seeds or aluminosilicate sources in syntheses to control polymorphs and/or reduce the quantity of organics used as structure-directing agents. A frequently invoked hypothesis for interzeolite transformations is that zeolites share some underlying similarity in structure, most notably in cases pertaining to organic-free syntheses. Herein, we show for the first time that ZSM-5 (MFI) can be directly obtained from USY (FAU) through an interzeolite transformation between parent-daughter structures lacking common building units in the absence of a structure-directing agent and seeds. We show that interzeolite transformation leads to a crystalline product with fewer defects. Our findings also reveal that ZSM-5 is a metastable intermediate that undergoes further transformation to mordenite (MOR) and quartz. The MFI-to-MOR transition is counter to reported trends for which transformations lead to structures with reduced molar volume. Herein, we propose mechanistic arguments that suggest the driving force for interzeolite transformation is more complex than guidelines posited in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...