Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Vet Res ; 18(1): 219, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689280

RESUMEN

BACKGROUND: Passive integrated transponder devices (PIT tags) are a valuable tool for individual identification of animals. Similarly, the surgical implantation of transmitters and bio-loggers can provide useful data on animal location, physiology and behavior. However, to avoid unnecessary recapture and related stress of study animals, PIT tags and bio-loggers should function reliably for long periods of time. Here, we evaluated the retention of PIT tags, and of very high frequency (VHF) transmitters and bio-loggers that were either implanted subcutaneously or into the peritoneal cavity of Eurasian beavers (Castor fiber). RESULTS: Over a 21-year period, we implanted PIT tags in 456 individuals and failed to detect a PIT tag at recapture in 30 cases, consisting of 26 individuals (6% of individuals). In all instances, we were still able to identify the individual due to the presence of unique ear tag numbers and tail scars. Moreover, we implanted 6 VHFs, 36 body temperature loggers and 21 heart rate loggers in 28 individuals, and experienced frequent loss of temperature loggers (at least 6 of 23 recaptured beavers) and heart rate loggers (10 of 18 recaptured beavers). No VHFs were lost in 2 recaptured beavers. CONCLUSIONS: Possible causes for PIT tag loss (or non-detection) were incorrect implantation, migration of the tag within the body, a foreign body reaction leading to ejection, or malfunctioning of the tag. We speculate that logger loss was related to a foreign body reaction, and that loggers were either rejected through the incision wound or, in the case of temperature loggers, possibly adhered and encapsulated to intestines, and then engulfed by the gastro-intestinal tract and ejected. We discuss animal welfare implications and give recommendations for future studies implanting bio-loggers into wildlife.


Asunto(s)
Enfermedades de los Roedores , Roedores , Bienestar del Animal , Animales , Animales Salvajes , Reacción a Cuerpo Extraño/veterinaria
2.
J Anat ; 241(3): 809-819, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35437747

RESUMEN

In contrast to the main olfactory system that detects volatile chemicals in the nasal air, the vomeronasal system can detect nonvolatile chemicals as well as volatiles. In the vomeronasal system, chemicals are perceived by the vomeronasal organ (VNO) projecting axons to the accessory olfactory bulb (AOB). Beavers (Castor spp.) are semiaquatic mammals that have developed chemical communication. It is possible that the beaver's anal gland secretions, nonvolatile and insoluble substances, may work as a messenger in the water and that beavers may detect the nonvolatile chemicals floating on the water surface via the VNO. The present study aimed to clarify the specificities of the beaver vomeronasal system by histologically and immunohistochemically analyzing the VNO and AOB of 12 Eurasian beavers (C. fiber). The VNO directly opened to the nasal cavity and was independent of a narrow nasopalatine duct connecting the oral and nasal cavities. The VNO comprised soft tissues including sensory and nonsensory epithelium, glands, a venous sinus, an artery, as well as cartilage inner, and bone outer enclosures. The AOB had distinct six layers, and anti-G protein α-i2 and α-o subunits were, respectively, immunoreactive in rostral and caudal glomeruli layers indicating expressions of V1Rs and V2Rs. According to gene repertories analysis, the beavers had 23 and six intact V1R and V2R genes respectively. These findings suggested that beavers recognize volatile odorants and nonvolatile substances using the vomeronasal system. The beaver VNO was developed as well as in other rodents, and it had two specific morphological features, namely, disadvantaged contact with the oral cavity because of a tiny nasopalatine duct, and a double bone and cartilage envelope. Our results highlight the importance of the vomeronasal system in beaver chemical communication and support the possibility that beavers can detect chemicals floating on the water surface via the VNO.


Asunto(s)
Órgano Vomeronasal , Animales , Bulbo Olfatorio/metabolismo , Roedores , Órgano Vomeronasal/anatomía & histología , Agua/análisis , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...