Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 137, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711119

RESUMEN

BACKGROUND: The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS: Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS: We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models.  CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas de Unión al ADN , Melanoma , Humanos , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Transl Med ; 20(1): 290, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761360

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive disease characterized by high risk of relapse and development of resistance to different chemotherapy agents. Several targeted therapies have been investigated in TNBC with modest results in clinical trials. Among these, PI3K/AKT inhibitors have been evaluated in addition to standard therapies, yielding conflicting results and making attempts on elucidating inherent mechanisms of resistance of great interest. Increasing evidences suggest that PI3K/AKT inhibitors can induce autophagy in different cancers. Autophagy represents a supposed mechanism of drug-resistance in aggressive tumors, like TNBC. We, therefore, investigated if two PI3K/AKT inhibitors, ipatasertib and taselisib, could induce autophagy in breast cancer models, and whether chloroquine (CQ), a well known autophagy inhibitor, could potentiate ipatasertib and taselisib anti-cancer effect in combination with conventional chemotherapy. METHODS: The induction of autophagy after ipatasertib and taselisib treatment was evaluated in MDAMB231, MDAM468, MCF7, SKBR3 and MDAB361 breast cancer cell lines by assaying LC3-I conversion to LC3-II through immunoblotting and immunofluorescence. Other autophagy-markers as p62/SQSTM1 and ATG5 were evaluated by immunoblotting. Synergistic antiproliferative effect of double and triple combinations of ipatasertib/taselisib plus CQ and/or paclitaxel were evaluated by SRB assay and clonogenic assay. Anti-apoptotic effect of double combination of ipatasertib/taselisib plus CQ was evaluated by increased cleaved-PARP by immunoblot and by Annexin V- flow cytometric analysis. In vivo experiments were performed on xenograft model of MDAMB231 in NOD/SCID mice. RESULTS: Our results suggested that ipatasertib and taselisib induce increased autophagy signaling in different breast cancer models. This effect was particularly evident in PI3K/AKT resistant TNBC cells, where the inhibition of autophagy by CQ potentiates the therapeutic effect of PI3K/AKT inhibitors in vitro and in vivo TNBC models, synergizing with taxane-based chemotherapy. CONCLUSION: These data suggest that inhibition of authophagy with CQ could overcome mechanism of drug resistance to PI3K/AKT inhibitors plus paclitaxel in TNBC making the evaluation of such combinations in clinical trials warranted.


Asunto(s)
Cloroquina , Resistencia a Antineoplásicos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Neoplasias de la Mama Triple Negativas , Animales , Autofagia , Línea Celular Tumoral , Proliferación Celular , Cloroquina/farmacología , Cloroquina/uso terapéutico , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
4.
J Exp Clin Cancer Res ; 41(1): 83, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241126

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) represents an unmet clinical need due to the very poor prognosis and the lack of effective therapy. Here we investigated the potential of domatinostat (4SC-202), a new class I histone deacetylase (HDAC) inhibitor, currently in clinical development, to sensitize PDAC to first line standard gemcitabine (G)/taxol (T) doublet chemotherapy treatment. METHODS: Synergistic anti-tumor effect of the combined treatment was assessed in PANC1, ASPC1 and PANC28 PDAC cell lines in vitro as well as on tumor spheroids and microtissues, by evaluating combination index (CI), apoptosis, clonogenic capability. The data were confirmed in vivo xenograft models of PANC28 and PANC1 cells in athymic mice. Cancer stem cells (CSC) targeting was studied by mRNA and protein expression of CSC markers, by limiting dilution assay, and by flow cytometric and immunofluorescent evaluation of CSC mitochondrial and cellular oxidative stress. Mechanistic role of forkhead box M1 (FOXM1) and downstream targets was evaluated in FOXM1-overexpressing PDAC cells. RESULTS: We showed that domatinostat sensitized in vitro and in vivo models of PDAC to chemotherapeutics commonly used in PDAC patients management and particularly to GT doublet, by targeting CSC compartment through the induction of mitochondrial and cellular oxidative stress. Mechanistically, we showed that domatinostat hampers the expression and function of FOXM1, a transcription factor playing a crucial role in stemness, oxidative stress modulation and DNA repair. Domatinostat reduced FOXM1 protein levels by downregulating mRNA expression and inducing proteasome-mediated protein degradation thus preventing nuclear translocation correlated with a reduction of FOXM1 target genes. Furthermore, by overexpressing FOXM1 in PDAC cells we significantly reduced domatinostat-inducing oxidative mitochondrial and cellular stress and abolished GT sensitization, both in adherent and spheroid cells, confirming FOXM1 crucial role in the mechanisms described. Finally, we found a correlation of FOXM1 expression with poor progression free survival in PDAC chemotherapy-treated patients. CONCLUSIONS: Overall, we suggest a novel therapeutic strategy based on domatinostat to improve efficacy and to overcome resistance of commonly used chemotherapeutics in PDAC that warrant further clinical evaluation.


Asunto(s)
Benzamidas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Benzamidas/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulación Neoplásica de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
5.
Mol Oncol ; 15(4): 1005-1023, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33331136

RESUMEN

Acquired resistance to platinum (Pt)-based therapies is an urgent unmet need in the management of epithelial ovarian cancer (EOC) patients. Here, we characterized by an unbiased proteomics method three isogenic EOC models of acquired Pt resistance (TOV-112D, OVSAHO, and MDAH-2774). Using this approach, we identified several differentially expressed proteins in Pt-resistant (Pt-res) compared to parental cells and the chaperone HSP90 as a central hub of these protein networks. Accordingly, up-regulation of HSP90 was observed in all Pt-res cells and heat-shock protein 90 alpha isoform knockout resensitizes Pt-res cells to cisplatin (CDDP) treatment. Moreover, pharmacological HSP90 inhibition using two different inhibitors [17-(allylamino)-17-demethoxygeldanamycin (17AAG) and ganetespib] synergizes with CDDP in killing Pt-res cells in all tested models. Mechanistically, genetic or pharmacological HSP90 inhibition plus CDDP -induced apoptosis and increased DNA damage, particularly in Pt-res cells. Importantly, the antitumor activities of HSP90 inhibitors (HSP90i) were confirmed both ex vivo in primary cultures derived from Pt-res EOC patients ascites and in vivo in a xenograft model. Collectively, our data suggest an innovative antitumor strategy, based on Pt compounds plus HSP90i, to rechallenge Pt-res EOC patients that might warrant further clinical evaluation.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Resistencia a Antineoplásicos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Platino (Metal)/uso terapéutico , Animales , Benzoquinonas , Línea Celular Tumoral , Cisplatino/uso terapéutico , Femenino , Humanos , Lactamas Macrocíclicas , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Proteómica , Triazoles , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Front Cell Dev Biol ; 8: 732, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015030

RESUMEN

Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a devastating malignancy with a poor prognosis. The combination of cisplatin (CDDP) plus cetuximab (CX) is one of the standard first-line treatments in this disease. However, this therapeutic regimen is often associated with high toxicity and resistance, suggesting that new combinatorial strategies are needed to improve its therapeutic index. In our study, we evaluated the antitumor effects of valproic acid (VPA), a well-known antiepileptic agent with histone deacetylase inhibitory activity, in combination with CDDP/CX doublet in head and neck squamous cell carcinoma (HNSCC) models. We demonstrated, in HNSCC cell lines, but not in normal human fibroblasts, that simultaneous exposure to equitoxic doses of VPA plus CDDP/CX resulted in a clear synergistic antiproliferative and pro-apoptotic effects. The synergistic antitumor effect was confirmed in four different 3D-self-assembled spheroid models, suggesting the ability of the combined approach to affect also the cancer stem cells compartment. Mechanistically, VPA enhanced DNA damage in combination treatment by reducing the mRNA expression of ERCC Excision Repair 1, a critical player in DNA repair, and by increasing CDDP intracellular concentration via upregulation at transcriptional level of CDDP influx channel copper transporter 1 and downregulation of the ATPAse ATP7B involved in CDDP-export. Valproic acid also induced a dose-dependent downregulation of epidermal growth factor receptor (EGFR) expression and of MAPK and AKT downstream signaling pathways and prevent CDDP- and/or CX-induced EGFR nuclear translocation, a well-known mechanism of resistance to chemotherapy. Indeed, VPA impaired the transcription of genes induced by non-canonical activity of nuclear EGFR, such as cyclin D1 and thymidylate synthase. Finally, we confirmed the synergistic antitumor effect also in vivo in both heterotopic and orthotopic models, demonstrating that the combined treatment completely blocked HNSCC xenograft tumors growth in nude mice. Overall, the introduction of a safe and generic drug such as VPA into the conventional treatment for R/M HNSCC represents an innovative and feasible antitumor strategy that warrants further clinical evaluation. A phase II clinical trial exploring the combination of VPA and CDDP/CX in R/M HNSCC patients is currently ongoing in our institute.

7.
J Exp Clin Cancer Res ; 39(1): 213, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33032653

RESUMEN

BACKGROUND: Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS: Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS: We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION: Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Factores de Transcripción/antagonistas & inhibidores , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Docetaxel/administración & dosificación , Resistencia a Antineoplásicos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Simvastatina/administración & dosificación , Células Tumorales Cultivadas , Ácido Valproico/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Ther Adv Med Oncol ; 12: 1758835920929589, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849914

RESUMEN

BACKGROUND: Despite effective treatments, metastatic colorectal cancer (mCRC) prognosis is still poor, mostly in RAS-mutated tumors, thus suggesting the need for novel combinatorial therapies. Epigenetic alterations play an important role in initiation and progression of cancers, including CRC. Histone-deacetylase inhibitors (HDACi) have shown activity in combination with chemotherapy in the treatment of solid tumors. Owing to its HDACi activity and its safe use for epileptic disorders, valproic acid (VPA) is a good candidate for anticancer therapy that we have largely explored preclinically translating our findings in currently ongoing clinical studies. We have shown in CRC models that HDACi, including VPA, induces synergistic antitumor effects in combination with fluoropyrimidines. Furthermore, unpublished results from our group demonstrated that VPA induces differentiation and sensitization of CRC stem cells to oxaliplatin. Moreover, preclinical and clinical data suggest that HDACi may prevent/reverse anti-angiogenic resistance. METHODS/DESIGN: A randomized, open-label, two-arm, multicenter phase-II study will be performed to explore whether the addition of VPA to first line bevacizumab/oxaliplatin/fluoropyrimidine regimens (mFOLFOX-6/mOXXEL) might improve progression-free survival (PFS) in RAS-mutated mCRC patients. A sample size of 200 patients was calculated under the hypothesis that the addition of VPA to chemotherapy/bevacizumab can improve PFS from 9 to 12 months, with one-sided alpha of 0.20 and a power of 0.80. Secondary endpoints are overall survival, objective response rate, metastases resection rate, toxicity, and quality of life. Moreover, the study will explore several prognostic and predictive biomarkers on blood samples, primary tumors, and on resected metastases. DISCUSSION: The "Revolution" study aims to improve the treatment efficacy of RAS-mutated mCRC through an attractive strategy evaluating the combination of VPA with standard cancer treatment. Correlative studies could identify novel biomarkers and could add new insight in the mechanism of interaction between VPA, fluoropyrimidine, oxaliplatin, and bevacizumab. TRIAL REGISTRATION: EudraCT: 2018-001414-15; ClinicalTrials.gov identifier: NCT04310176.

9.
J Exp Clin Cancer Res ; 38(1): 459, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703596

RESUMEN

BACKGROUND: The biological behavior of epithelial ovarian cancer (EOC) is unique since EOC cells metastasize early to the peritoneum. Thereby, new anti-target agents designed to block trans-coelomic dissemination of EOC cells may be useful as anti-metastatic drugs. The Urokinase Plasminogen Activator Receptor (uPAR) is overexpressed in EOC tissues, and its truncated forms released in sera and/or ascitic fluid are associated with poor prognosis and unfavorable clinical outcome. We documented that uPAR triggers intra-abdominal dissemination of EOC cells through the interaction of its 84-95 sequence with the Formyl Peptide Receptor type 1 (FPR1), even as short linear peptide Ser-Arg-Ser-Arg-Tyr (SRSRY). While the pro-metastatic role of uPAR is well documented, little information regarding the expression and role of FPR1 in EOC is currently available. METHODS: Expression levels of uPAR and FPR1 in EOC cells and tissues were assessed by immunofluorescence, Western blot, or immunohystochemistry. Cell adhesion to extra-cellular matrix proteins and mesothelium as well as mesothelium invasion kinetics by EOC cells were monitored using the xCELLigence technology or assessed by measuring cell-associated fluorescence. Cell internalization of FPR1 was identified on multiple z-series by confocal microscopy. Data from in vitro assays were analysed by one-way ANOVA and post-hoc Dunnett t-test for multiple comparisons. Tissue microarray data were analyzed with the Pearson's Chi-square (χ2) test. RESULTS: Co-expression of uPAR and FPR1 by SKOV-3 and primary EOC cells confers a marked adhesion to vitronectin. The extent of cell adhesion decreases to basal level by pre-exposure to anti-uPAR84-95 Abs, or to the RI-3 peptide, blocking the uPAR84-95/FPR1 interaction. Furthermore, EOC cells exposed to RI-3 or desensitized with an excess of SRSRY, fail to adhere also to mesothelial cell monolayers, losing the ability to cross them. Finally, primary and metastatic EOC tissues express a high level of FPR1. CONCLUSIONS: Our findings identify for the first time FPR1 as a potential biomarker of aggressive EOC and suggests that inhibitors of the uPAR84-95/FPR1 crosstalk may be useful for the treatment of metastatic EOC.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Neoplasias Ováricas/metabolismo , Receptores de Formil Péptido/antagonistas & inhibidores , Receptores de Formil Péptido/metabolismo , Adulto , Anciano , Antineoplásicos/farmacología , Biomarcadores de Tumor , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Expresión Génica , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Receptores de Formil Péptido/genética
10.
Mol Cancer Ther ; 18(8): 1405-1417, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31189612

RESUMEN

The 5-fluorouracil/cisplatin (5FU/CDDP) combination is one of the most widely used treatment options for several solid tumors. However, despite good anticancer responses, this regimen is often associated with high toxicity and treatment resistance. In our study, we evaluated whether the histone deacetylase inhibitor (HDACi), vorinostat, may induce synergistic antitumor and proapoptotic effects in combination with 5FU/CDDP in squamous cancer cell models. We demonstrated in cancer cell lines, including the intrinsic CDDP-resistant Cal27 cells, that simultaneous exposure to equitoxic doses of vorinostat plus 5FU/CDDP results in strong synergistic antiproliferative and proapoptotic effects related to cell-cycle perturbation and DNA damage induction. These effects were confirmed in vivo in both orthotopic and heterotopic xenograft mouse models of Cal27 cells. Mechanistically, vorinostat reverted 5FU/CDDP-induced EGFR phosphorylation and nuclear translocation, leading to the impairment of nuclear EGFR noncanonical induction of genes such as thymidylate synthase and cyclin D1. These effects were exerted by vorinostat, at least in part, by increasing lysosomal-mediated EGFR protein degradation. Moreover, vorinostat increased platinum uptake and platinated DNA levels by transcriptionally upregulating the CDDP influx channel copper transporter 1 (CTR1). Overall, to our knowledge, this study is the first to demonstrate the ability of vorinostat to inhibit two well-known mechanisms of CDDP resistance, EGFR nuclear translocation and CTR1 overexpression, adding new insight into the mechanism of the synergistic interaction between HDACi- and CDDP-based chemotherapy and providing the rationale to clinically explore this combination to overcome dose-limiting toxicity and chemotherapy resistance.


Asunto(s)
Transporte Activo de Núcleo Celular/efectos de los fármacos , Antineoplásicos/farmacología , Cisplatino/farmacología , Fluorouracilo/farmacología , Vorinostat/farmacología , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Transportador de Cobre 1/metabolismo , Daño del ADN , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Clin Med ; 8(7)2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31247937

RESUMEN

Resistance to therapy in patients with solid cancers represents a daunting challenge that must be addressed. Indeed, current strategies are still not effective in the majority of patients; which has resulted in the need for novel therapeutic approaches. Cancer stem cells (CSCs), a subset of tumor cells that possess self-renewal and multilineage differentiation potential, are known to be intrinsically resistant to anticancer treatments. In this review, we analyzed the implications for CSCs in drug resistance and described that multiple alterations in morphogenetic pathways (i.e. Hippo, Wnt, JAK/STAT, TGF-, Notch, Hedgehog pathways) were suggested to be critical for CSC plasticity. By interrogating The Cancer Genome Atlas (TCGA) datasets, we first analyzed the prevalence of morphogenetic pathways alterations in solid tumors with associated outcomes. Then, by highlighting epigenetic relevance in CSC development and maintenance, we selected histone deacetylase inhibitors (HDACi) as potential agents of interest to target this subpopulation based on the pleiotropic effects exerted specifically on altered morphogenetic pathways. In detail, we highlighted the role of HDACi in solid cancers and,specifically,in the CSC subpopulation and we pointed out some mechanisms by which HDACi are able to overcome drug resistance and to modulate stemness. Although, further clinical and preclinical investigations should be conducted to disclose the unclear mechanisms by which HDACi modulate several signaling pathways in different tumors. To date, several lines of evidence support the testing of novel combinatorial therapeutic strategies based on the combination of drugs commonly used in clinical practice and HDACi to improve therapeutic efficacy in solid cancer patients.

12.
J Cell Physiol ; 234(6): 9077-9092, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30362533

RESUMEN

Although platinum-based chemotherapy remains the standard-of-care for most patients with advanced non-small-cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP-resistant (CPr-A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr-A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum-resistance.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Neoplasias Pulmonares/tratamiento farmacológico , Proteómica , Vimentina/metabolismo , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Bases de Datos de Proteínas , Estrés del Retículo Endoplásmico , Transición Epitelial-Mesenquimal , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Pliegue de Proteína , Mapas de Interacción de Proteínas , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Sci Rep ; 8(1): 5823, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643468

RESUMEN

Circulating endothelial cells (CEC) represent a restricted peripheral blood (PB) cell subpopulation with high potential diagnostic value in many endothelium-involving diseases. However, whereas the interest in CEC studies has grown, the standardization level of their detection has not. Here, we undertook the task to align CEC phenotypes and counts, by standardizing a novel flow cytometry approach, within a network of six laboratories. CEC were identified as alive/nucleated/CD45negative/CD34bright/CD146positive events and enumerated in 269 healthy PB samples. Standardization was demonstrated by the achievement of low inter-laboratory Coefficients of Variation (CVL), calculated on the basis of Median Fluorescence Intensity values of the most stable antigens that allowed CEC identification and count (CVL of CD34bright on CEC ~ 30%; CVL of CD45 on Lymphocytes ~ 20%). By aggregating data acquired from all sites, CEC numbers in the healthy population were captured (medianfemale = 9.31 CEC/mL; medianmale = 11.55 CEC/mL). CEC count biological variability and method specificity were finally assessed. Results, obtained on a large population of donors, demonstrate that the established procedure might be adopted as standardized method for CEC analysis in clinical and in research settings, providing a CEC physiological baseline range, useful as starting point for their clinical monitoring in endothelial dysfunctions.


Asunto(s)
Recuento de Células Sanguíneas/métodos , Separación Celular/normas , Células Endoteliales , Endotelio Vascular/citología , Citometría de Flujo/normas , Adulto , Variación Biológica Poblacional , Recuento de Células Sanguíneas/normas , Separación Celular/métodos , Estudios de Factibilidad , Femenino , Citometría de Flujo/métodos , Voluntarios Sanos , Hematología/métodos , Hematología/normas , Humanos , Laboratorios/normas , Masculino , Persona de Mediana Edad , Valores de Referencia , Sensibilidad y Especificidad , Adulto Joven
14.
J Exp Clin Cancer Res ; 36(1): 177, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29212503

RESUMEN

BACKGROUND: Recurrence with distant metastases has become the predominant pattern of failure in locally advanced rectal cancer (LARC), thus the integration of new antineoplastic agents into preoperative fluoropyrimidine-based chemo-radiotherapy represents a clinical challenge to implement an intensified therapeutic strategy. The present study examined the combination of the histone deacetylase inhibitor (HDACi) valproic acid (VPA) with fluoropyrimidine-based chemo-radiotherapy on colorectal cancer (CRC) cells. METHODS: HCT-116 (p53-wild type), HCT-116 p53-/- (p53-null), SW620 and HT29 (p53-mutant) CRC cell lines were used to assess the antitumor interaction between VPA and capecitabine metabolite 5'-deoxy-5-fluorouridine (5'-DFUR) in combination with radiotherapy and to evaluate the role of p53 in the combination treatment. Effects on proliferation, clonogenicity and apoptosis were evaluated, along with γH2AX foci formation as an indicator for DNA damage. RESULTS: Combined treatment with equipotent doses of VPA and 5'-DFUR resulted in synergistic effects in CRC lines expressing p53 (wild-type or mutant). In HCT-116 p53-/- cells we observed antagonist effects. Radiotherapy further potentiated the antiproliferative, pro-apoptotic and DNA damage effects induced by 5'-DFUR/VPA combination in p53 expressing cells. CONCLUSIONS: These results highlighted the role of VPA as valuable candidate to be added to preoperative chemo-radiotherapy in LARC. On these bases we launched the ongoing phase I/II study of VPA and short-course radiotherapy plus capecitabine as preoperative treatment in low-moderate risk rectal cancer (V-shoRT-R3).


Asunto(s)
Capecitabina/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/radioterapia , Proteína p53 Supresora de Tumor/metabolismo , Ácido Valproico/uso terapéutico , Capecitabina/farmacología , Neoplasias Colorrectales/patología , Citometría de Flujo , Humanos , Ácido Valproico/farmacología
15.
Oxid Med Cell Longev ; 2017: 2597581, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28770020

RESUMEN

The role of altered redox status and high reactive oxygen species (ROS) is still controversial in cancer development and progression. Intracellular levels of ROS are elevated in cancer cells suggesting a role in cancer initiation and progression; on the contrary, ROS elevated levels may induce programmed cell death and have been associated with cancer suppression. Thus, it is crucial to consider the double-face of ROS, for novel therapeutic strategies targeting redox regulatory mechanisms. In this review, in order to derive cancer-type specific oxidative stress genes' profile and their potential prognostic role, we integrated a publicly available oxidative stress gene signature with patient survival data from the Cancer Genome Atlas database. Overall, we found several genes statistically significant associated with poor prognosis in the examined six tumor types. Among them, FoxM1 and thioredoxin reductase1 expression showed the same pattern in four out of six cancers, suggesting their specific critical role in cancer-related oxidative stress adaptation. Our analysis also unveiled an enriched cellular network, highlighting specific pathways, in which many genes are strictly correlated. Finally, we discussed novel findings on the correlation between oxidative stress and cancer stem cells in order to define those pathways to be prioritized in drug development.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/biosíntesis , Neoplasias , Células Madre Neoplásicas/metabolismo , Estrés Oxidativo , Proteína Forkhead Box M1/biosíntesis , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células Madre Neoplásicas/patología , Pronóstico , Tiorredoxina Reductasa 1/biosíntesis
16.
PLoS One ; 12(5): e0177677, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28531193

RESUMEN

Although oocyte cryopreservation has great potentials in the field of reproductive technologies, it still is an open challenge in the majority of domestic animals and little is known on the biochemical transformation induced by this process in the different cellular compartments. Raman micro-spectroscopy allows the non-invasive evaluation of the molecular composition of cells, based on the inelastic scattering of laser photons by vibrating molecules. The aim of this work was to assess the biochemical modifications of both the zona pellucida and cytoplasm of vitrified/warmed in vitro matured bovine oocytes at different post-warming times. By taking advantage of Principal Component Analysis, we were able to shed light on the biochemical transformation induced by the cryogenic treatment, also pointing out the specific role of cryoprotective agents (CPs). Our results suggest that vitrification induces a transformation of the protein secondary structure from the α-helices to the ß-sheet form, while lipids tend to assume a more packed configuration in the zona pellucida. Both modifications result in a mechanical hardening of this cellular compartment, which could account for the reduced fertility rates of vitrified oocytes. Furthermore, biochemical modifications were observed at the cytoplasmic level in the protein secondary structure, with α-helices loss, suggesting cold protein denaturation. In addition, a decrease of lipid unsaturation was found in vitrified oocytes, suggesting oxidative damages. Interestingly, most modifications were not observed in oocytes exposed to CPs, suggesting that they do not severely affect the biochemical architecture of the oocyte. Nevertheless, in oocytes exposed to CPs decreased developmental competence and increased reactive oxygen species production were observed compared to the control. A more severe reduction of cleavage and blastocyst rates after in vitro fertilization was obtained from vitrified oocytes. Our experimental outcomes also suggest a certain degree of reversibility of the induced transformations, which renders vitrified oocytes more similar to untreated cells after 2 h warming.


Asunto(s)
Criopreservación/veterinaria , Preservación de la Fertilidad/métodos , Metabolismo de los Lípidos , Oocitos/citología , Proteínas/química , Animales , Tasa de Natalidad , Bovinos , Supervivencia Celular , Citoplasma/metabolismo , Femenino , Preservación de la Fertilidad/veterinaria , Oocitos/metabolismo , Oogénesis , Análisis de Componente Principal , Estructura Secundaria de Proteína , Espectrometría Raman , Zona Pelúcida/metabolismo
17.
Oncotarget ; 7(15): 19559-74, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26862736

RESUMEN

ErbB3, a member of the ErbB family receptors, has a key role in the development and progression of several cancers, including non-small cell lung cancer (NSCLC), and in the establishment of resistance to therapies, leading to the development of anti-ErbB3 therapies.In this study we demonstrated, in a set of malignant pleural effusion-derived cultures of NSCLC, the synergistic antitumor effect of a histone deacetylase inhibitor (HDACi), such as vorinostat or valproic acid (VPA), in combination with the anti-ErbB3 monoclonal antibody (MoAb) A3. Synergistic interaction was observed in 2D and in 3D cultures conditions, both in fully epithelial cells expressing all ErbB receptors, and in cells that had undergone epithelial to mesenchymal transition and expressed low levels of ErbB3. We provided evidences suggesting that differential modulation of ErbB receptors by vorinostat or VPA, also at low doses corresponding to plasma levels easily reached in treated patients, is responsible for the observed synergism. In details, we showed in epithelial cells that both vorinostat and VPA induced time- and dose-dependent down-regulation of all three ErbB receptors and of downstream signaling. On the contrary, in A3-resistant mesenchymal cells, we observed time- and dose-dependent increase of mRNA and protein levels as well as surface expression of ErbB3, paralleled by down-regulation of EGFR and ErbB2. Our results suggest that the combination of a HDACi plus an anti-ErbB3 MoAb represents a viable strategy that warrants further evaluation for the treatment of NSCLC patients.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Receptor ErbB-3/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/farmacología , Immunoblotting , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptor ErbB-3/genética , Receptor ErbB-3/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Ácido Valproico/farmacología , Vorinostat
18.
Oncotarget ; 7(7): 7715-31, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26735339

RESUMEN

The prognosis of patients with metastatic breast cancer remains poor, and thus novel therapeutic approaches are needed. Capecitabine, which is commonly used for metastatic breast cancer in different settings, is an inactive prodrug that takes advantage of elevated levels of thymidine phosphorylase (TP), a key enzyme that is required for its conversion to 5-fluororacil, in tumors. We demonstrated that histone deacetylase inhibitors (HDACi), including low anticonvulsant dosage of VPA, induced the dose- and time-dependent up-regulation of TP transcript and protein expression in breast cancer cells, but not in the non-tumorigenic breast MCF-10A cell line. Through the use of siRNA or isoform-specific HDACi, we demonstrated that HDAC3 is the main isoform whose inhibition is involved in the modulation of TP. The combined treatment with capecitabine and HDACi, including valproic acid (VPA), resulted in synergistic/additive antiproliferative and pro-apoptotic effects in breast cancer cells but not in TP-knockout cells, both in vitro and in vivo, highlighting the crucial role of TP in the synergism observed. Overall, this study suggests that the combination of HDACi (e.g., VPA) and capecitabine is an innovative antitumor strategy that warrants further clinical evaluation for the treatment of metastatic breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Capecitabina/farmacología , Sinergismo Farmacológico , Timidina Fosforilasa/metabolismo , Ácido Valproico/farmacología , Animales , Anticonvulsivantes/farmacología , Antimetabolitos Antineoplásicos/farmacología , Western Blotting , Neoplasias de la Mama/enzimología , Proliferación Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Quimioterapia Combinada , Femenino , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos NOD , Ratones SCID , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Timidina Fosforilasa/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Free Radic Biol Med ; 89: 287-99, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26409771

RESUMEN

In non-small-cell lung cancer (NSCLC) patients, the activation of alternative pathways contributes to the limited efficacy of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. The present study examines a panel of EGFR wild-type, K-Ras mutated, NSCLC lines, which were all intrinsically resistant to EGFR-TKIs, and demonstrates that the histone deacetylase inhibitor vorinostat can improve the therapeutic efficacy of gefitinib or erlotinib, inducing strong synergistic antiproliferative and pro-apoptotic effects that are paralleled by reactive oxygen species accumulation and by increased DNA damage. By knockdown experiments, we suggested that the up-regulation of voltage-dependent anion-selective channel protein 1 (VDAC1), the major mitochondrial porin of the outer mitochondrial membrane, which was induced by vorinostat and further increased by the combination, could be functionally involved in oxidative stress-dependent apoptosis. Significantly, we also observed the attenuation of the expression of both the enzyme hexokinase1, a negative VDAC1 regulator, and the anti-apoptotic porin VDAC2, only in the combination setting, suggesting convergent mechanisms that enhanced mitochondria-dependent apoptosis by targeting VDAC protein functions. Furthermore, the prosurvival capacities of the cells were also inhibited by the combination treatments, as shown by complete pAKT deactivation, increased GSK3ß expression, and c-Myc down-regulation. Finally, we observed that the combination treatment of vorinostat and either of the EGFR-TKIs induced the down-regulation of the c-Myc-regulated nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor and the up-regulation of the NRF2 repressor Kelch-like ECH-associated protein 1 regulator (KEAP1). These two genes are crucial for the redox stress response, often dysfunctional in NSCLC, and involved in EGFR-TKI resistance. Taken together, these results are the first to demonstrate that altering redox homeostasis is a new mechanism underlying the observed synergism between vorinostat and EGFR TKIs in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Apoptosis/efectos de los fármacos , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Gefitinib , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Quinazolinas/farmacología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Canal Aniónico 1 Dependiente del Voltaje/genética , Vorinostat
20.
BMC Cancer ; 14: 875, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25421252

RESUMEN

BACKGROUND: Locally advanced rectal cancer (LARC) is a heterogeneous group of tumors where a risk-adapted therapeutic strategy is needed. Short-course radiotherapy (SCRT) is a more convenient option for LARC patients than preoperative long-course RT plus capecitabine. Histone-deacetylase inhibitors (HDACi) have shown activity in combination with RT and chemotherapy in the treatment of solid tumors. Valproic acid (VPA) is an anti-epileptic drug with HDACi and anticancer activity. In preclinical studies, our group showed that the addition of HDACi, including VPA, to capecitabine produces synergistic antitumour effects by up-regulating thymidine phosphorylase (TP), the key enzyme converting capecitabine to 5-FU, and by downregulating thymidylate synthase (TS), the 5-FU target. METHODS/DESIGN: Two parallel phase-1 studies will assess the safety of preoperative SCRT (5 fractions each of 5 Gy, on days 1 to 5) combined with (a) capecitabine alone (increasing dose levels: 500-825 mg/m2/bid), on days 1-21, or (b) capecitabine as above plus VPA (oral daily day -14 to 21, with an intra-patient titration for a target serum level of 50-100 microg/ml) followed by surgery 8 weeks after the end of SCRT, in low-moderate risk RC patients. Also, a randomized phase-2 study will be performed to explore whether the addition of VPA and/or capecitabine to preoperative SCRT might increase pathologic complete tumor regression (TRG1) rate. A sample size of 86 patients (21-22/arm) was calculated under the hypothesis that the addition of capecitabine or VPA to SCRT can improve the TRG1 rate from 5% to 20%, with one-sided alpha = 0.10 and 80% power.Several biomarkers will be evaluated comparing normal mucosa with tumor (TP, TS, VEGF, RAD51, XRCC1, Histones/proteins acetylation, HDAC isoforms) and on blood samples (polymorphisms of DPD, TS, XRCC1, GSTP1, RAD51 and XRCC3, circulating endothelial and progenitors cells; PBMCs-Histones/proteins acetylation). Tumor metabolism will be measured by 18FDG-PET at baseline and 15 days after the beginning of SCRT. DISCUSSION: This project aims to improve the efficacy of preoperative treatment of LARC and to decrease the inconvenience and the cost of standard long-course RT. Correlative studies could identify both prognostic and predictive biomarkers and could add new insight in the mechanism of interaction between VPA, capecitabine and RT.EudraCT Number: 2012-002831-28. TRIAL REGISTRATION: ClinicalTrials.gov number, NCT01898104.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Recto/terapia , Adolescente , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Capecitabina , Terapia Combinada , Desoxicitidina/administración & dosificación , Desoxicitidina/efectos adversos , Desoxicitidina/análogos & derivados , Femenino , Fluorouracilo/administración & dosificación , Fluorouracilo/efectos adversos , Fluorouracilo/análogos & derivados , Humanos , Masculino , Persona de Mediana Edad , Cuidados Preoperatorios , Radioterapia/métodos , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/radioterapia , Neoplasias del Recto/cirugía , Proyectos de Investigación , Ácido Valproico/administración & dosificación , Ácido Valproico/efectos adversos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...