Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Foot Ankle Surg ; 62(1): 197-203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36184447

RESUMEN

Acute lateral ankle sprain (ALAS) is one of the most frequent musculoskeletal injuries, with a great impact on health and socioeconomic factors. There are few consensuses on this subject and multiple therapeutic options that are difficult to compare due to the lack of a universally adopted classification system. The objective of this study is to is to report the actual knowledge on how ALAS are classified and reported and not to make any therapeutic recommendation. A comprehensive literature review of the literature was carried out through a search in the MEDLINE, Cochrane Library and Google Scholar databases, with identification of articles that describe ways to classify lateral ankle sprains or with relevant content for their classification. Twenty-five different classification systems were identified. The majority of articles referring to ALAS use an unspecific classification. Most classification systems divide sprains into 3 degrees. The most used parameters are the anatomy of the injury, clinical parameters, functional loss and the presence of instability. No articles were found to verify the validity of the systems used, namely regarding their association with therapeutic proposals or prognostic predictions. Based on the available evidence, recommendations cannot be made regarding the most appropriate classification system. The considerable heterogeneity of the existing literature makes it difficult to compare studies and to optimize the treatment and follow-up of these injuries. Future research in this area is necessary to define a practical and rigorous system that can be used universally.


Asunto(s)
Traumatismos del Tobillo , Ligamentos Laterales del Tobillo , Esguinces y Distensiones , Humanos , Ligamentos Laterales del Tobillo/cirugía , Articulación del Tobillo , Esguinces y Distensiones/terapia , Traumatismos del Tobillo/diagnóstico , Traumatismos del Tobillo/terapia , Pronóstico
2.
Environ Pollut ; 285: 117279, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33971424

RESUMEN

Wildfires are a complex environmental problem worldwide. The ashes produced during the fire bear metals and PAHs with high toxicity and environmental persistence. These are mobilized into downhill waterbodies, where they can impair water quality and human health. In this context, the present study aimed at assessing the toxicity of mimicked wildfire runoff to human skin cells, providing a first view on the human health hazardous potential of such matrices. Human keratinocytes (HaCaT) were exposed to aqueous extracts of ashes (AEA) prepared from ash deposited in the soil after wildfires burned a pine or a eucalypt forest stand. Cytotoxicity (MTT assay) and changes in cell cycle dynamics (flow cytometry) were assessed. Cell viability decreased with increasing concentrations of AEA, regardless of the ash source, the extracts preparation method (filtered or unfiltered to address the dissolved or the total fractions of contaminants, respectively) or the exposure period (24 and 48 h). The cells growth was also negatively affected by the tested AEA matrices, as evidenced by a deceleration of the progress through the cell cycle, namely from phase G0/G1 to G2. The cytotoxicity of AEA could be related to particulate and dissolved metal content, but the particles themselves may directly affect the cell membrane. Eucalypt ash was apparently more cytotoxic than pine ash due to differential ash metal burden and mobility to the water phase. The deceleration of the cell cycle can be explained by the attempt of cells to repair metal-induced DNA damage, while if this checkpoint and repair pathways are not well coordinated by metal interference, genomic instability may occur. Globally, our results trigger public health concerns since the burnt areas frequently stand in slopes of watershed that serve as recreation sites and sources of drinking water, thus promoting human exposure to wildfire-driven contamination.


Asunto(s)
Incendios , Incendios Forestales , Bosques , Humanos , Metales , Suelo
3.
Environ Sci Pollut Res Int ; 28(37): 51733-51744, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33987727

RESUMEN

Wildfires are an environmental concern due to the loss of forest area and biodiversity, but also because their role as drivers of freshwater systems contamination by metals. In this context, the fish Gambusia holbrooki was used as a model, deployed for in situ exposure in watercourses standing within a recently burnt area and further assessment of toxic effects. The fish were exposed during 4 days at four different sites: one upstream and another downstream the burnt area and two within the burnt area. Biochemical biomarkers for oxidative stress and damage were assessed. The extent of lipoperoxidative damage was monitored by quantifying malondialdehyde and DNA damage evaluated through erythrocyte nuclear abnormalities observation. Chemical analysis revealed higher metal levels within the burnt area, and exposed fish consistently showed pro-oxidative responses therein, particularly an increase of gill glutathione peroxidase and glutathione reductase activity, the records doubling compared to samples from sites in the unburnt area; also the activity of glutathione-S-transferases comparatively increased (by 2-fold in the liver) in samples from the burnt area, and malondialdehyde was produced twice as much therein and in samples downstream the burnt area reflecting oxidative damage. Consistently, the frequency of erythrocyte nuclear abnormalities was higher at sites within and downstream the burnt area. This study supports the use of sensitive oxidative stress and genotoxicity biomarkers for an early detection of potentially noxious ecological effects of wildfires runoff.


Asunto(s)
Ciprinodontiformes , Contaminantes Químicos del Agua , Incendios Forestales , Animales , Organismos Acuáticos/metabolismo , Biomarcadores/metabolismo , Ciprinodontiformes/metabolismo , Eritrocitos/metabolismo , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...