Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 83(1): 84-92, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21035648

RESUMEN

The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the µg m(-3) range) and their variations with sampling site and time. In this work, a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE), a quick separation technique that requires nothing more than some nanoliters of sample and, when combined with capacitively coupled contactless conductometric detection (C(4)D), is particularly favorable for ionic species that do not absorb in the UV-vis region, like the target analytes formaldehyde, formic acid, acetic acid and ammonium. The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry's constant such as formaldehyde and carboxylic acids, or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8.3 nL s(-1)), while the sample was aspirated through the annular gap of the concentric tubes at 2.5 mL s(-1). A second unit, in all similar to the CMDS, was operated as a capillary membrane diffusion emitter (CMDE), generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS. The fluids of the system were driven with inexpensive aquarium air pumps, and the collected samples were stored in vials cooled by a Peltier element. Complete protocols were developed for the analysis, in air, of NH(3), CH(3)COOH, HCOOH and, with a derivatization setup, CH(2)O, by associating the CMDS collection with the determination by CE-C(4)D. The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot's reaction. Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction, solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW). All techniques and methods of this work are in line with the green analytical chemistry trends.


Asunto(s)
Ácido Acético/aislamiento & purificación , Contaminantes Atmosféricos/aislamiento & purificación , Aire/análisis , Amoníaco/aislamiento & purificación , Formaldehído/aislamiento & purificación , Formiatos/aislamiento & purificación , Ácido Acético/análisis , Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Electroforesis Capilar/métodos , Formaldehído/análisis , Formiatos/análisis , Gases/análisis , Membranas Artificiales , Polipropilenos/química , Porosidad , Sensibilidad y Especificidad
2.
Talanta ; 76(2): 271-5, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18585276

RESUMEN

Compared to other volatile carbonylic compounds present in outdoor air, formaldehyde (CH(2)O) is the most toxic, deserving more attention in terms of indoor and outdoor air quality legislation and control. The analytical determination of CH(2)O in air still presents challenges due to the low-level concentration (in the sub-ppb range) and its variation with sampling site and time. Of the many available analytical methods for carbonylic compounds, the most widespread one is the time consuming collection in cartridges impregnated with 2,4-dinitrophenylhydrazine followed by the analysis of the formed hydrazones by HPLC. The present work proposes the use of polypropylene hollow porous capillary fibers to achieve efficient CH(2)O collection. The Oxyphan fiber (designed for blood oxygenation) was chosen for this purpose because it presents good mechanical resistance, high density of very fine pores and high ratio of collection area to volume of the acceptor fluid in the tube, all favorable for the development of air sampling apparatus. The collector device consists of a Teflon pipe inside of which a bundle of polypropylene microporous capillary membranes was introduced. While the acceptor passes at a low flow rate through the capillaries, the sampled air circulates around the fibers, impelled by a low flow membrane pump (of the type used for aquariums ventilation). The coupling of this sampling technique with the selective and quantitative determination of CH(2)O, in the form of hydroxymethanesulfonate (HMS) after derivatization with HSO(3)(-), by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D) enabled the development of a complete analytical protocol for the CH(2)O evaluation in air.


Asunto(s)
Contaminantes Atmosféricos/análisis , Conductometría/métodos , Electroforesis Capilar/métodos , Formaldehído/análisis , Diseño de Equipo , Polipropilenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA