Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645004

RESUMEN

Interactions between biological systems and nanomaterials have become an important area of study due to the application of nanomaterials in medicine. In particular, the application of nanomaterials for cancer diagnosis or treatment presents a challenging opportunity due to the complex biology of this disease spanning multiple time and spatial scales. A system-level analysis would benefit from mathematical modeling and computational simulation to explore the interactions between anticancer drug-loaded nanoparticles (NPs), cells, and tissues, and the associated parameters driving this system and a patient's overall response. Although a number of models have explored these interactions in the past, few have focused on simulating individual cell-NP interactions. This study develops a multicellular agent-based model of cancer nanotherapy that simulates NP internalization, drug release within the cell cytoplasm, "inheritance" of NPs by daughter cells at cell division, cell pharmacodynamic response to the intracellular drug, and overall drug effect on tumor dynamics. A large-scale parallel computational framework is used to investigate the impact of pharmacokinetic design parameters (NP internalization rate, NP decay rate, anticancer drug release rate) and therapeutic strategies (NP doses and injection frequency) on the tumor dynamics. In particular, through the exploration of NP "inheritance" at cell division, the results indicate that cancer treatment may be improved when NPs are inherited at cell division for cytotoxic chemotherapy. Moreover, smaller dosage of cytostatic chemotherapy may also improve inhibition of tumor growth when cell division is not completely inhibited. This work suggests that slow delivery by "heritable" NPs can drive new dimensions of nanotherapy design for more sustained therapeutic response.

2.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37961612

RESUMEN

Defining a multicellular model can be challenging. There may be hundreds of parameters that specify the attributes and behaviors of objects. Hopefully the model will be defined using some format specification, e.g., a markup language, that will provide easy model sharing (and a minimal step toward reproducibility). PhysiCell is an open source, physics-based multicellular simulation framework with an active and growing user community. It uses XML to define a model and, traditionally, users needed to manually edit the XML to modify the model. PhysiCell Studio is a tool to make this task easier. It provides a graphical user interface that allows editing the XML model definition, including the creation and deletion of fundamental objects, e.g., cell types and substrates in the microenvironment. It also lets users build their model by defining initial conditions and biological rules, run simulations, and view results interactively. PhysiCell Studio has evolved over multiple workshops and academic courses in recent years which has led to many improvements. Its design and development has benefited from an active undergraduate and graduate research program. Like PhysiCell, the Studio is open source software and contributions from the community are encouraged.

3.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37745323

RESUMEN

Cells are fundamental units of life, constantly interacting and evolving as dynamical systems. While recent spatial multi-omics can quantitate individual cells' characteristics and regulatory programs, forecasting their evolution ultimately requires mathematical modeling. We develop a conceptual framework-a cell behavior hypothesis grammar-that uses natural language statements (cell rules) to create mathematical models. This allows us to systematically integrate biological knowledge and multi-omics data to make them computable. We can then perform virtual "thought experiments" that challenge and extend our understanding of multicellular systems, and ultimately generate new testable hypotheses. In this paper, we motivate and describe the grammar, provide a reference implementation, and demonstrate its potential through a series of examples in tumor biology and immunotherapy. Altogether, this approach provides a bridge between biological, clinical, and systems biology researchers for mathematical modeling of biological systems at scale, allowing the community to extrapolate from single-cell characterization to emergent multicellular behavior.

4.
Front Digit Health ; 4: 1007784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274654

RESUMEN

We are rapidly approaching a future in which cancer patient digital twins will reach their potential to predict cancer prevention, diagnosis, and treatment in individual patients. This will be realized based on advances in high performance computing, computational modeling, and an expanding repertoire of observational data across multiple scales and modalities. In 2020, the US National Cancer Institute, and the US Department of Energy, through a trans-disciplinary research community at the intersection of advanced computing and cancer research, initiated team science collaborative projects to explore the development and implementation of predictive Cancer Patient Digital Twins. Several diverse pilot projects were launched to provide key insights into important features of this emerging landscape and to determine the requirements for the development and adoption of cancer patient digital twins. Projects included exploring approaches to using a large cohort of digital twins to perform deep phenotyping and plan treatments at the individual level, prototyping self-learning digital twin platforms, using adaptive digital twin approaches to monitor treatment response and resistance, developing methods to integrate and fuse data and observations across multiple scales, and personalizing treatment based on cancer type. Collectively these efforts have yielded increased insights into the opportunities and challenges facing cancer patient digital twin approaches and helped define a path forward. Given the rapidly growing interest in patient digital twins, this manuscript provides a valuable early progress report of several CPDT pilot projects commenced in common, their overall aims, early progress, lessons learned and future directions that will increasingly involve the broader research community.

5.
Nonlinear Dyn ; 110(3): 2589-2609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060282

RESUMEN

Machine learning methods have revolutionized studies in several areas of knowledge, helping to understand and extract information from experimental data. Recently, these data-driven methods have also been used to discover structures of mathematical models. The sparse identification of nonlinear dynamics (SINDy) method has been proposed with the aim of identifying nonlinear dynamical systems, assuming that the equations have only a few important terms that govern the dynamics. By defining a library of possible terms, the SINDy approach solves a sparse regression problem by eliminating terms whose coefficients are smaller than a threshold. However, the choice of this threshold is decisive for the correct identification of the model structure. In this work, we build on the SINDy method by integrating it with a global sensitivity analysis (SA) technique that allows to hierarchize terms according to their importance in relation to the desired quantity of interest, thus circumventing the need to define the SINDy threshold. The proposed SINDy-SA framework also includes the formulation of different experimental settings, recalibration of each identified model, and the use of model selection techniques to select the best and most parsimonious model. We investigate the use of the proposed SINDy-SA framework in a variety of applications. We also compare the results against the original SINDy method. The results demonstrate that the SINDy-SA framework is a promising methodology to accurately identify interpretable data-driven models. Supplementary Information: The online version contains supplementary material available at 10.1007/s11071-022-07755-2.

6.
iScience ; 24(9): 102935, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34568781

RESUMEN

Hypoxia is a critical factor in solid tumors that has been associated with cancer progression and aggressiveness. We recently developed a hypoxia fate mapping system to trace post-hypoxic cells within a tumor for the first time. This approach uses an oxygen-dependent fluorescent switch and allowed us to measure key biological features such as oxygen distribution, cell proliferation, and migration. We developed a computational model to investigate the motility and phenotypic persistence of hypoxic and post-hypoxic cells during tumor progression. The cellular behavior was defined by phenotypic persistence time, cell movement bias, and the fraction of cells that respond to an enhanced migratory stimulus. This work combined advanced cell tracking and imaging techniques with mathematical modeling, to reveal that a persistent invasive migratory phenotype that develops under hypoxia is required for cellular escape into the surrounding tissue, promoting the formation of invasive structures ("plumes") that expand toward the oxygenated tumor regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...