Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36009448

RESUMEN

Hypertension is of unknown aetiology, with sympathetic nervous system hyperactivation being one of the possible contributors. Hypertension may have a developmental origin, owing to the exposure to adverse factors during the intrauterine period. Our hypothesis is that sympathetic hyperinnervation may be implicated in hypertension of developmental origins, being this is a common feature with essential hypertension. Two-animal models were used: spontaneously hypertensive rats (SHR-model of essential hypertension) and offspring from dams exposed to undernutrition (MUN-model of developmental hypertension), with their respective controls. In adult males, we assessed systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), sympathetic nerve function (3H-tritium release), sympathetic innervation (immunohistochemistry) and vascular remodelling (histology). MUN showed higher SBP/DBP, but not HR, while SHR exhibited higher SBP/DBP/HR. Regarding the mesenteric arteries, MUN and SHR showed reduced lumen, increased media and adventitial thickness and increased wall/lumen and connective tissue compared to respective controls. Regarding sympathetic nerve activation, MUN and SHR showed higher tritium release compared to controls. Total tritium tissue/tyrosine hydroxylase detection was higher in SHR and MUN adventitia arteries compared to respective controls. In conclusion, sympathetic hyperinnervation may be one of the contributors to vascular remodelling and hypertension in rats exposed to undernutrition during intrauterine life, which is a common feature with spontaneous hypertension.

2.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35163158

RESUMEN

Fetal stress is known to increase susceptibility to cardiometabolic diseases and hypertension in adult age in a process known as fetal programming. This study investigated the relationship between vascular RAS, oxidative damage and remodeling in fetal programming. Six-month old Sprague-Dawley offspring from mothers that were fed ad libitum (CONTROL) or with 50% intake during the second half of gestation (maternal undernutrition, MUN) were used. qPCR or immunohistochemistry were used to obtain the expression of receptors and enzymes. Plasma levels of carbonyls were measured by spectrophotometry. In mesenteric arteries from MUN rats we detected an upregulation of ACE, ACE2, AT1 receptors and NADPH oxidase, and lower expression of AT2, Mas and MrgD receptors compared to CONTROL. Systolic and diastolic blood pressure and plasma levels of carbonyls were higher in MUN than in CONTROL. Vascular morphology evidenced an increased media/lumen ratio and adventitia/lumen ratio, and more connective tissue in MUN compared to CONTROL. In conclusion, fetal undernutrition indices RAS alterations and oxidative damage which may contribute to the remodeling of mesenteric arteries, and increase the risk of adverse cardiovascular events and hypertension.


Asunto(s)
Desarrollo Fetal , Trastornos Nutricionales en el Feto/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos , Arterias Mesentéricas/patología , Estrés Oxidativo , Sistema Renina-Angiotensina , Remodelación Vascular , Animales , Presión Sanguínea , Femenino , Masculino , Arterias Mesentéricas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo
3.
Int J Mol Sci ; 22(9)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063607

RESUMEN

Angiotensin II (Ang II) regulates colon contraction, acting not only directly on smooth muscle but also indirectly, interfering with myenteric neuromodulation mediated by the activation of AT1 /AT2 receptors. In this article, we aimed to explore which mediators and cells were involved in Ang II-mediated colonic contraction in the TNBS-induced rat model of colitis. The contractile responses to Ang II were evaluated in distinct regions of the colon of control animals or animals with colitis in the absence and presence of different antagonists/inhibitors. Endogenous levels of Ang II in the colon were assessed by ELISA and the number of AT1/AT2 receptors by qPCR. Ang II caused AT1 receptor-mediated colonic contraction that was markedly decreased along the colons of TNBS-induced rats, consistent with reduced AT1 mRNA expression. However, the effect mediated by Ang II is much more intricate, involving (in addition to smooth muscle cells and nerve terminals) ICC and EGC, which communicate by releasing ACh and NO in a complex mechanism that changes colitis, unveiling new therapeutic targets.


Asunto(s)
Angiotensina II/genética , Colitis/genética , Enfermedades Inflamatorias del Intestino/genética , Sistema Renina-Angiotensina/genética , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Colitis/fisiopatología , Colon/metabolismo , Colon/patología , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/patología , Humanos , Enfermedades Inflamatorias del Intestino/patología , Células Intersticiales de Cajal/metabolismo , Células Intersticiales de Cajal/patología , Masculino , Contracción Muscular/genética , Contracción Muscular/fisiología , Músculo Liso Vascular/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Óxido Nítrico/metabolismo , Ratas , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 2/genética , Transmisión Sináptica/genética
4.
Pharmaceuticals (Basel) ; 14(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066915

RESUMEN

G-protein-coupled receptors (GPCRs) comprise a large protein superfamily divided into six classes, rhodopsin-like (A), secretin receptor family (B), metabotropic glutamate (C), fungal mating pheromone receptors (D), cyclic AMP receptors (E) and frizzled (F). Until recently, GPCRs signaling was thought to emanate exclusively from the plasma membrane as a response to extracellular stimuli but several studies have challenged this view demonstrating that GPCRs can be present in intracellular localizations, including in the nuclei. A renewed interest in GPCR receptors' superfamily emerged and intensive research occurred over recent decades, particularly regarding class A GPCRs, but some class B and C have also been explored. Nuclear GPCRs proved to be functional and capable of triggering identical and/or distinct signaling pathways associated with their counterparts on the cell surface bringing new insights into the relevance of nuclear GPCRs and highlighting the nucleus as an autonomous signaling organelle (triggered by GPCRs). Nuclear GPCRs are involved in physiological (namely cell proliferation, transcription, angiogenesis and survival) and disease processes (cancer, cardiovascular diseases, etc.). In this review we summarize emerging evidence on nuclear GPCRs expression/function (with some nuclear GPCRs evidencing atypical/disruptive signaling pathways) in non-communicable disease, thus, bringing nuclear GPCRs as targets to the forefront of debate.

5.
Pathophysiology ; 28(2): 273-290, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35366262

RESUMEN

Fetal undernutrition is a risk factor for cardiovascular diseases. Male offspring from rats exposed to undernutrition during gestation (MUN) exhibit oxidative stress during perinatal life and develop cardiac dysfunction in ageing. Angiotensin-II is implicated in oxidative stress-mediated cardiovascular fibrosis and remodeling, and lactation is a key developmental window. We aimed to assess if alterations in RAS during lactation participate in cardiac dysfunction associated with fetal undernutrition. Control dams received food ad libitum, and MUN had 50% nutrient restriction during the second half of gestation. Both dams were fed ad libitum during lactation, and male offspring were studied at weaning. We assessed: ventricular structure and function (echocardiography); blood pressure (intra-arterially, anesthetized rats); collagen content and intramyocardial artery structure (Sirius red, Masson Trichromic); myocardial and intramyocardial artery RAS receptors (immunohistochemistry); plasma angiotensin-II (ELISA) and TGF-ß1 protein expression (Western Blot). Compared to Control, MUN offspring exhibited significantly higher plasma Angiotensin-II and a larger left ventricular mass, as well as larger intramyocardial artery media/lumen, interstitial collagen and perivascular collagen. In MUN hearts, TGF-ß1 tended to be higher, and the end-diastolic diameter and E/A ratio were significantly lower with no differences in ejection fraction or blood pressure. In the myocardium, no differences between groups were detected in AT1, AT2 or Mas receptors, with MrgD being significantly lower in the MUN group. In intramyocardial arteries from MUN rats, AT1 and Mas receptors were significantly elevated, while AT2 and MrgD were lower compared to Control. Conclusions. In rats exposed to fetal undernutrition, RAS disbalance and associated cardiac remodeling during lactation may set the basis for later heart dysfunction.

6.
Drug Discov Today ; 24(11): 2192-2201, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31520747

RESUMEN

Cell surface G-protein-coupled receptors (GPCRs) are targets for ∼ 30% of drugs currently on the market, and are the largest group of gene products targeted by drugs. Until recently, signaling mediated by GPCRs was thought to emanate exclusively from the cell membrane as a response to extracellular stimuli. However, recent research has revealed the existence of nuclear (n)GPCRs with the ability to trigger identical and/or distinct signaling pathways to their respective counterparts on the cell surface. Understanding of the GPCR signaling platform on the nuclear membranes and its involvement in physiology and/or pathophysiology will be important to develop selective pharmacological and pharmaceutical approaches. In this review, we summarize our current understanding of nGPCRs, with emphasis on their potential as novel pharmacological targets.


Asunto(s)
Desarrollo de Medicamentos/métodos , Membrana Nuclear/metabolismo , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Humanos , Terapia Molecular Dirigida , Especificidad de Órganos , Preparaciones Farmacéuticas , Transporte de Proteínas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Distribución Tisular
7.
PLoS One ; 10(6): e0129224, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075386

RESUMEN

Nitric oxide (NO) seems to contribute to vascular homeostasis regulating neurotransmission. This work aimed at assessing the influence of NO from different sources and respective intracellular pathways on sympathetic neurotransmission, in two vascular beds. Electrically-evoked [3H]-noradrenaline release was assessed in rat mesenteric and tail arteries in the presence of NO donors or endothelial/neuronal nitric oxide synthase (NOS) inhibitors. The influence of NO on adenosine-mediated effects was also studied using selective antagonists for adenosine receptors subtypes. Location of neuronal NOS (nNOS) was investigated by immunohistochemistry (with specific antibodies for nNOS and for Schwann cells) and Confocal Microscopy. Results indicated that: 1) in mesenteric arteries, noradrenaline release was reduced by NO donors and it was increased by nNOS inhibitors; the effect of NO donors was only abolished by the adenosine A1 receptors antagonist; 2) in tail arteries, noradrenaline release was increased by NO donors and it was reduced by eNOS inhibitors; adenosine receptors antagonists were devoid of effect; 3) confocal microscopy showed nNOS staining in adventitial cells, some co-localized with Schwann cells. nNOS staining and its co-localization with Schwann cells were significantly lower in tail compared to mesenteric arteries. In conclusion, in mesenteric arteries, nNOS, mainly located in Schwann cells, seems to be the main source of NO influencing perivascular sympathetic neurotransmission with an inhibitory effect, mediated by adenosine A1 receptors activation. Instead, in tail arteries endothelial NO seems to play a more relevant role and has a facilitatory effect, independent of adenosine receptors activation.


Asunto(s)
Endotelio Vascular/metabolismo , Arterias Mesentéricas/metabolismo , Neuronas/fisiología , Óxido Nítrico/metabolismo , Transmisión Sináptica/fisiología , Antagonistas del Receptor de Adenosina A1/farmacología , Adenosina Quinasa/antagonistas & inhibidores , Animales , Hemodinámica , Masculino , Arterias Mesentéricas/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I/metabolismo , Ratas , Receptor de Adenosina A1/metabolismo , Flujo Sanguíneo Regional
8.
PLoS One ; 9(8): e105540, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25158061

RESUMEN

BACKGROUND: Increased sympathetic activity has been implicated in hypertension. Adenosine has been shown to play a role in blood flow regulation. In the present study, the endogenous adenosine neuromodulatory role, in mesenteric arteries from normotensive and spontaneously hypertensive rats, was investigated. METHODS AND RESULTS: The role of endogenous adenosine in sympathetic neurotransmission was studied using electrically-evoked [3H]-noradrenaline release experiments. Purine content was determined by HPLC with fluorescence detection. Localization of adenosine A1 or A2A receptors in adventitia of mesenteric arteries was investigated by Laser Scanning Confocal Microscopy. Results indicate a higher electrically-evoked noradrenaline release from hypertensive mesenteric arteries. The tonic inhibitory modulation of noradrenaline release is mediated by adenosine A1 receptors and is lacking in arteries from hypertensive animals, despite their purine levels being higher comparatively to those determined in normotensive ones. Tonic facilitatory adenosine A2A receptor-mediated effects were absent in arteries from both strains. Immunohistochemistry revealed an adenosine A1 receptors redistribution from sympathetic fibers to Schwann cells, in adventitia of hypertensive mesenteric arteries which can explain, at least in part, the absence of effects observed for these receptors. CONCLUSION: Data highlight the role of purines in hypertension revealing that an increase in sympathetic activity in hypertensive arteries is occurring due to a higher noradrenaline/ATP release from sympathetic nerves and the loss of endogenous adenosine inhibitory tonus. The observed nerve-to-glial redistribution of inhibitory adenosine A1 receptors in hypertensive arteries may explain the latter effect.


Asunto(s)
Adenosina/metabolismo , Hipertensión/fisiopatología , Arterias Mesentéricas/inervación , Arterias Mesentéricas/fisiopatología , Transmisión Sináptica , Adenosina Trifosfato/metabolismo , Animales , Hipertensión/metabolismo , Masculino , Arterias Mesentéricas/metabolismo , Norepinefrina/metabolismo , Ratas , Ratas Endogámicas SHR , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...