Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Neurosci ; 43(44): 7264-7275, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37699715

RESUMEN

Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that are involved in synapse assembly and function. The NLGN gene family consists of 5 genes (NLGN1-3, 4X, and 4Y). NLGN3 forms heterodimers with other NLGNs and is expressed at both excitatory and inhibitory synapses, although the distinct role at different synapses is not fully understood. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that targets various neuronal substrates to impact neuronal migration, neurite outgrowth, synaptic transmission, and plasticity. Both NLGNs and their presynaptic binding partners neurexins are highly associated with neurodevelopmental disorders. The NLGN3 gene is on the X chromosome and variants in NLGN3 have been linked to the pathophysiology in neurodevelopmental disorders. To better understand the endogenous modulation of NLGN3, we generated an HA-tagged knock-in mouse. We found that Cdk5 associates with NLGN3 in vivo and phosphorylates NLGN3 on serine 725 (S725) in the knock-in mouse of either sex. The phosphorylation affects the NLGN3 association with Kalirin-7, a postsynaptic guanine nucleotide exchange factors for Rho GTPase family proteins. We further observed that the phosphorylation modulates NLGN3 surface expression and NLGN3-mediated synaptic currents in cultured rat neurons. Thus, we characterized NLGN3 as a novel Cdk5 substrate and revealed the functional consequences of NLGN3 S725 phosphorylation in neurons. Our study provides a novel molecular mechanism underlying Cdk5-mediated regulation of postsynaptic cell adhesion molecules.SIGNIFICANCE STATEMENT NLGN3 is involved in synapse assembly and function at both excitatory and inhibitory synapses and has been associated with the pathophysiology of neurodevelopmental disorders. Cdk5 has brain-specific activity and is involved in neuronal transmission, synapse function, and plasticity. Here, we characterize NLGN3 as a Cdk5 substrate for the first time and show that Cdk5-mediated phosphorylation regulates NLGN3 function. We demonstrate that NLGN3 S725 is a Cdk5 phosphorylation site, and reveal that the site is important for NLGN3 association with Kalirin-7, NLGN3 surface expression, and NLGN3-mediated synaptic transmission.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Sinapsis , Animales , Ratones , Ratas , Moléculas de Adhesión Celular/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Fosforilación/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Serina/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
2.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37720016

RESUMEN

Neurodevelopmental disorders are frequently linked to mutations in synaptic organizing molecules. MAM domain containing glycosylphosphatidylinositol anchor 1 and 2 (MDGA1 and MDGA2) are a family of synaptic organizers suggested to play an unusual role as synaptic repressors, but studies offer conflicting evidence for their localization. Using epitope-tagged MDGA1 and MDGA2 knock-in mice, we found that native MDGAs are expressed throughout the brain, peaking early in postnatal development. Surprisingly, endogenous MDGA1 was enriched at excitatory, but not inhibitory, synapses. Both shRNA knockdown and CRISPR/Cas9 knockout of MDGA1 resulted in cell-autonomous, specific impairment of AMPA receptor-mediated synaptic transmission, without affecting GABAergic transmission. Conversely, MDGA2 knockdown/knockout selectively depressed NMDA receptor-mediated transmission but enhanced inhibitory transmission. Our results establish that MDGA2 acts as a synaptic repressor, but only at inhibitory synapses, whereas both MDGAs are required for excitatory transmission. This nonoverlapping division of labor between two highly conserved synaptic proteins is unprecedented.

3.
Trends Neurosci ; 46(6): 411-412, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36959051

RESUMEN

In a recent study, Bonnet and colleagues leveraged in silico structure prediction and human genetic data to understand the molecular regulation of the Rac1-activating guanie nucleotide exchange factor (Rac1-GEF) domain of Trio. Their work sheds new light on the role of Trio during axon guidance and explores the mechanism by which Trio GEF function is regulated in health and dysregulated in disease.


Asunto(s)
Orientación del Axón , Factores de Intercambio de Guanina Nucleótido , Proteínas Serina-Treonina Quinasas , Proteína de Unión al GTP rac1 , Humanos , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/fisiología , Orientación del Axón/genética , Modelos Genéticos , Proteína de Unión al GTP rac1/química , Dominios Proteicos
4.
J Neurosci ; 41(37): 7768-7778, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34353896

RESUMEN

We recently identified an autism spectrum disorder/intellectual disability (ASD/ID)-related de novo mutation hotspot in the Rac1-activating GEF1 domain of the protein Trio. Trio is a Rho guanine nucleotide exchange factor (RhoGEF) that is essential for glutamatergic synapse function. An ASD/ID-related mutation identified in Trio's GEF1 domain, Trio D1368V, produces a pathologic increase in glutamatergic synaptogenesis, suggesting that Trio is coupled to synaptic regulatory mechanisms that govern glutamatergic synapse formation. However, the molecular mechanisms by which Trio regulates glutamatergic synapses are largely unexplored. Here, using biochemical methods, we identify an interaction between Trio and the synaptogenic protein Neuroligin 1 (NLGN1) in the brain. Molecular biological approaches were then combined with super-resolution dendritic spine imaging and whole-cell voltage-clamp electrophysiology in hippocampal slices from male and female rats to examine the impact ASD/ID-related Trio mutations have on NLGN1-mediated synaptogenesis. We find that an ASD/ID-related mutation in Trio's eighth spectrin repeat region, Trio N1080I, inhibits Trio's interaction with NLGN1 and prevents Trio D1368V-mediated synaptogenesis. Inhibiting Trio's interaction with NLGN1 via Trio N1080I blocked NLGN1-mediated synaptogenesis and increases in synaptic NMDA Receptor function but not NLGN1-mediated increases in synaptic AMPA Receptor function. Finally, we show that the aberrant synaptogenesis produced by Trio D1368V is dependent on NLGN signaling. Our findings demonstrate that ASD/ID-related mutations in Trio are able to pathologically increase as well as decrease NLGN-mediated effects on glutamatergic neurotransmission, and point to an NLGN1-Trio interaction as part of a key pathway involved in ASD/ID etiology.SIGNIFICANCE STATEMENT A number of genes have been implicated in the development of autism spectrum disorder/intellectual disability (ASD/ID) in humans. It is now important to identify relationships between these genes to uncover specific cellular regulatory pathways that contribute to these disorders. In this study, we discover that two glutamatergic synapse regulatory proteins implicated in ASD/ID, Trio and Neuroligin 1, interact with one another to promote glutamatergic synaptogenesis. We also identify ASD/ID-related mutations in Trio that either inhibit or augment Neuroligin 1-mediated glutamatergic synapse formation. Together, our results identify a synaptic regulatory pathway that, when disrupted, likely contributes to the development of ASD/ID. Going forward, it will be important to determine whether this pathway represents a point of convergence of other proteins implicated in ASD/ID.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular Neuronal/genética , Discapacidad Intelectual/genética , Mutación , Sinapsis/genética , Animales , Trastorno del Espectro Autista/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Espinas Dendríticas/genética , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/metabolismo , Discapacidad Intelectual/metabolismo , Masculino , Neurogénesis/fisiología , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
5.
Cell Rep ; 36(1): 109338, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34233182

RESUMEN

NMDA receptor (NMDAR)-dependent Ca2+ influx underpins multiple forms of synaptic plasticity. Most synaptic NMDAR currents in the adult forebrain are mediated by GluN2A-containing receptors, which are rapidly inserted into synapses during long-term potentiation (LTP); however, the underlying molecular mechanisms remain poorly understood. In this study, we show that GluN2A is phosphorylated at Ser-1459 by Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) in response to glycine stimulation that mimics LTP in primary neurons. Phosphorylation of Ser-1459 promotes GluN2A interaction with the sorting nexin 27 (SNX27)-retromer complex, thereby enhancing the endosomal recycling of NMDARs. Loss of SNX27 or CaMKIIα function blocks the glycine-induced increase in GluN2A-NMDARs on the neuronal membrane. Interestingly, mutations of Ser-1459, including the rare S1459G human epilepsy variant, prolong the decay times of NMDAR-mediated synaptic currents in heterosynapses by increasing the duration of channel opening. These findings not only identify a critical role of Ser-1459 phosphorylation in regulating the function of NMDARs, but they also explain how the S1459G variant dysregulates NMDAR function.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Activación del Canal Iónico , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Glicina , Células HEK293 , Humanos , Modelos Biológicos , Mutación/genética , Proteínas del Tejido Nervioso , Fosforilación , Fosfoserina/metabolismo , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/metabolismo
6.
Genet Med ; 23(10): 1912-1921, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34113010

RESUMEN

PURPOSE: In this study, we aimed to characterize the clinical phenotype of a SHANK1-related disorder and define the functional consequences of SHANK1 truncating variants. METHODS: Exome sequencing (ES) was performed for six individuals who presented with neurodevelopmental disorders. Individuals were ascertained with the use of GeneMatcher and Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER). We evaluated potential nonsense-mediated decay (NMD) of two variants by making knock-in cell lines of endogenous truncated SHANK1, and expressed the truncated SHANK1 complementary DNA (cDNA) in HEK293 cells and cultured hippocampal neurons to examine the proteins. RESULTS: ES detected de novo truncating variants in SHANK1 in six individuals. Evaluation of NMD resulted in stable transcripts, and the truncated SHANK1 completely lost binding with Homer1, a linker protein that binds to the C-terminus of SHANK1. These variants may disrupt protein-protein networks in dendritic spines. Dispersed localization of the truncated SHANK1 variants within the spine and dendritic shaft was also observed when expressed in neurons, indicating impaired synaptic localization of truncated SHANK1. CONCLUSION: This report expands the clinical spectrum of individuals with truncating SHANK1 variants and describes the impact these variants may have on the pathophysiology of neurodevelopmental disorders.


Asunto(s)
Proteínas del Tejido Nervioso , Trastornos del Neurodesarrollo , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Neuronas , Fenotipo , Secuenciación del Exoma
7.
Front Mol Neurosci ; 14: 647451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935646

RESUMEN

Protein-protein interaction networks and signaling complexes are essential for normal brain function and are often dysregulated in neurological disorders. Nevertheless, unraveling neuron- and synapse-specific proteins interaction networks has remained a technical challenge. New techniques, however, have allowed for high-resolution and high-throughput analyses, enabling quantification and characterization of various neuronal protein populations. Over the last decade, mass spectrometry (MS) has surfaced as the primary method for analyzing multiple protein samples in tandem, allowing for the precise quantification of proteomic data. Moreover, the development of sophisticated protein-labeling techniques has given MS a high temporal and spatial resolution, facilitating the analysis of various neuronal substructures, cell types, and subcellular compartments. Recent studies have leveraged these novel techniques to reveal the proteomic underpinnings of well-characterized neuronal processes, such as axon guidance, long-term potentiation, and homeostatic plasticity. Translational MS studies have facilitated a better understanding of complex neurological disorders, such as Alzheimer's disease (AD), Schizophrenia (SCZ), and Autism Spectrum Disorder (ASD). Proteomic investigation of these diseases has not only given researchers new insight into disease mechanisms but has also been used to validate disease models and identify new targets for research.

8.
Curr Opin Neurobiol ; 69: 93-104, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33823469

RESUMEN

Many genes encoding synaptic proteins are associated with neurodevelopmental disorders (NDDs) such as autism spectrum disorders (ASDs), intellectual disability (ID), and epilepsy. Here we review recent studies on the synaptic effects of disease-associated rare variants identified in two families of synaptic proteins: NMDA receptors (NMDARs) and the postsynaptic adhesion molecules neuroligins (NLGNs). Many NMDAR subunit genes (GRINs) are highly intolerant to variation, and both gain-of-function (GOF) and loss-of-function (LOF) variants are implicated in disease. NLGN genes are also associated with ASDs, and in some cases, contribute to the male bias identified in these patients. Understanding the molecular basis of synaptic dysfunction of rare variants in these genes will help the design of new therapeutic approaches.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/genética , Humanos , Masculino , Trastornos del Neurodesarrollo/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Sinapsis/metabolismo
9.
eNeuro ; 8(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33568460

RESUMEN

SHANK3 is a large scaffolding protein in the postsynaptic density (PSD) that organizes protein networks, which are critical for synaptic structure and function. The strong genetic association of SHANK3 with autism spectrum disorder (ASD) emphasizes the importance of SHANK3 in neuronal development. SHANK3 has a critical role in organizing excitatory synapses and is tightly regulated by alternative splicing and posttranslational modifications. In this study, we examined basal and activity-dependent phosphorylation of Shank3 using mass spectrometry (MS) analysis from in vitro phosphorylation assays, in situ experiments, and studies with cultured neurons. We found that Shank3 is highly phosphorylated, and we identified serine 782 (S782) as a potent CaMKII phosphorylation site. Using a phosphorylation state-specific antibody, we demonstrate that CaMKII can phosphorylate Shank3 S782 in vitro and in heterologous cells on cotransfection with CaMKII. We also observed an effect of a nearby ASD-associated variant (Shank3 S685I), which increased S782 phosphorylation. Notably, eliminating phosphorylation of Shank3 with a S782A mutation increased Shank3 and PSD-95 synaptic puncta size without affecting Shank3 colocalization with PSD-95 in cultured hippocampal neurons. Taken together, our study revealed that CaMKII phosphorylates Shank3 S782 and that the phosphorylation affects Shank3 synaptic properties.


Asunto(s)
Trastorno del Espectro Autista , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Sinapsis/metabolismo
10.
J Physiol ; 599(2): 443-451, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32170729

RESUMEN

Phosphorylation regulates glutamate receptor trafficking. The cytosolic C-terminal domains of both NMDA receptors (NMDARs) and AMPA receptors (AMPARs) have distinct motifs, which are substrates for serine/threonine and tyrosine phosphorylation. Decades of research have shown how phosphorylation of glutamate receptors mediates protein binding and receptor trafficking, ultimately controlling synaptic transmission and plasticity. STEP is a protein tyrosine phosphatase (also known as PTPN5), with several isoforms resulting from alternative splicing. Targets of STEP include a variety of important synaptic substrates, among which are the tyrosine kinase Fyn and glutamate receptors. In particular, STEP61 , the longest isoform, dephosphorylates the NMDAR subunit GluN2B and strongly regulates the expression of NMDARs at synapses. This interplay between STEP, Fyn and GluN2B-containing NMDARs has been characterized by multiple groups. More recently, STEP61 was shown to bind to AMPARs in a subunit-specific manner and differentially regulate synaptic NMDARs and AMPARs. Because of its many effects on synaptic proteins, STEP has been implicated in regulating excitatory synapses during plasticity and playing a role in synaptic dysfunction in a variety of neurological disorders. In this review, we will highlight the ways in which STEP61 differentially regulates NMDARs and AMPARs, as well as its role in plasticity and disease.


Asunto(s)
Proteínas Tirosina Fosfatasas , Receptores de N-Metil-D-Aspartato , Animales , Cuerpo Estriado/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Tirosina
11.
Cell Rep ; 32(9): 108104, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877683

RESUMEN

Rare variants in GRIN genes, which encode NMDAR subunits, are strongly associated with neurodevelopmental disorders. Among these, GRIN2A, which encodes the GluN2A subunit of NMDARs, is widely accepted as an epilepsy-causative gene. Here, we functionally characterize the de novo GluN2A-S1459G mutation identified in an epilepsy patient. We show that S1459 is a CaMKIIα phosphorylation site, and that endogenous phosphorylation is regulated during development and in response to synaptic activity in a dark rearing model. GluN2A-S1459 phosphorylation results in preferential binding of NMDARs to SNX27 and a corresponding decrease in PSD-95 binding, which consequently regulates NMDAR trafficking. Furthermore, the epilepsy-associated GluN2A-S1459G variant displays defects in interactions with both SNX27 and PSD-95, resulting in trafficking deficits, reduced spine density, and decreased excitatory synaptic transmission. These data demonstrate a role for CaMKIIα phosphorylation of GluN2A in receptor targeting and implicate NMDAR trafficking defects as a link to epilepsy.


Asunto(s)
Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Epilepsia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Epilepsia/genética , Femenino , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética
12.
Epilepsia Open ; 5(3): 344-353, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32913943

RESUMEN

Epilepsy can occur in individuals with Down syndrome (DS), with epileptic spasms representing the most frequent seizure type in this population. Epileptic spasms can have devastating consequences on the development of individuals with the condition. This review sought to explore the lifetime prevalence and underlying mechanism of epileptic spasms in this population. We also aimed to review the response rate to various treatments, the relapse rate, and the development of subsequent epilepsy or autism in this population. A comprehensive literature search was conducted for articles discussing the lifetime prevalence, diagnosis, treatment, outcomes, or underlying etiology of epileptic spasms in animal models or individuals with DS. According to available literature, the global clinic-based lifetime prevalence of epilepsy in individuals with DS ranged from 1.6% to 23.1%, with epileptic spasms representing 6.7%-66.7% of these cases. Response rate to treatment with adrenocorticotropic hormone/corticosteroids was highest (81%) and has the most literature supporting its use, with other regimens, including vigabatrin and other antiepileptic drugs, having lower response rates. Epileptic spasms occur more frequently in children with DS than in the general population, though more studies are needed to determine the true lifetime prevalence of epileptic spasms in this population. Generally, children with DS and epileptic spasms tend to be more responsive to treatment and have better outcomes than children with epileptic spasms of unknown etiology (ie, without DS), in terms of response and relapse rates as well as the development of intractable epilepsy (eg, Lennox-Gastaut syndrome).

13.
Artículo en Inglés | MEDLINE | ID: mdl-32848696

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that results in social-communication impairments, as well as restricted and repetitive behaviors. Moreover, ASD is more prevalent in males, with a male to female ratio of 4 to 1. Although the underlying etiology of ASD is generally unknown, recent advances in genome sequencing have facilitated the identification of a host of associated genes. Among these, synaptic proteins such as cell adhesion molecules have been strongly linked with ASD. Interestingly, many large genome sequencing studies exclude sex chromosomes, which leads to a shift in focus toward autosomal genes as targets for ASD research. However, there are many genes on the X chromosome that encode synaptic proteins, including strong candidate genes. Here, we review findings regarding two members of the neuroligin (NLGN) family of postsynaptic adhesion molecules, NLGN3 and NLGN4. Neuroligins have multiple isoforms (NLGN1-4), which are both autosomal and sex-linked. The sex-linked genes, NLGN3 and NLGN4, are both on the X chromosome and were among the first few genes to be linked with ASD and intellectual disability (ID). In addition, there is a less studied human neuroligin on the Y chromosome, NLGN4Y, which forms an X-Y pair with NLGN4X. We will discuss recent findings of these neuroligin isoforms regarding function at the synapse in both rodent models and human-derived differentiated neurons, and highlight the exciting challenges moving forward to a better understanding of ASD/ID.

14.
Trends Neurosci ; 43(7): 505-518, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32513570

RESUMEN

Changes in the actin cytoskeleton are a primary mechanism mediating the morphological and functional plasticity that underlies learning and memory. The synaptic Ras homologous (Rho) guanine nucleotide exchange factors (GEFs) Kalirin and Trio have emerged as central regulators of actin dynamics at the synapse. The increased attention surrounding Kalirin and Trio stems from the growing evidence for their roles in the etiology of a wide range of neurodevelopmental and neurodegenerative disorders. In this Review, we discuss recent findings revealing the unique and diverse functions of these paralog proteins in neurodevelopment, excitatory synaptic transmission, and plasticity. We additionally survey the growing literature implicating these proteins in various neurological disorders.


Asunto(s)
Encefalopatías , Transmisión Sináptica , Actinas , Humanos , Factores de Intercambio de Guanina Nucleótido Rho , Sinapsis
15.
Genet Med ; 22(8): 1329-1337, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32341572

RESUMEN

PURPOSE: Impaired function of gonadotropin-releasing hormone (GnRH) neurons can cause a phenotypic spectrum ranging from delayed puberty to isolated hypogonadotropic hypogonadism (IHH). We sought to identify a new genetic etiology for these conditions. METHODS: Exome sequencing was performed in an extended family with autosomal dominant, markedly delayed puberty. The effects of the variant were studied in a GnRH neuronal cell line. Variants in the same gene were sought in a large cohort of individuals with IHH. RESULTS: We identified a rare missense variant (F900V) in DLG2 (which encodes PSD-93) that cosegregated with the delayed puberty. The variant decreased GnRH expression in vitro. PSD-93 is an anchoring protein of NMDA receptors, a type of glutamate receptor that has been implicated in the control of puberty in laboratory animals. The F900V variant impaired the interaction between PSD-93 and a known binding partner, Fyn, which phosphorylates NMDA receptors. Variants in DLG2 that also decreased GnRH expression were identified in three unrelated families with IHH. CONCLUSION: The findings indicate that variants in DLG2/PSD-93 cause autosomal dominant delayed puberty and may also contribute to IHH. The findings also suggest that the pathogenesis involves impaired NMDA receptor signaling and consequently decreased GnRH secretion.


Asunto(s)
Hormona Liberadora de Gonadotropina , Hipogonadismo , Hormona Liberadora de Gonadotropina/genética , Guanilato-Quinasas , Humanos , Hipogonadismo/genética , Proteínas , Transducción de Señal , Proteínas Supresoras de Tumor , Secuenciación del Exoma
16.
Neuron ; 106(5): 759-768.e7, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32243781

RESUMEN

Autism spectrum disorder (ASD) is more prevalent in males; however, the etiology for this sex bias is not well understood. Many mutations on X-linked cell adhesion molecule NLGN4X result in ASD or intellectual disability. NLGN4X is part of an X-Y pair, with NLGN4Y sharing ∼97% sequence homology. Using biochemistry, electrophysiology, and imaging, we show that NLGN4Y displays severe deficits in maturation, surface expression, and synaptogenesis regulated by one amino acid difference with NLGN4X. Furthermore, we identify a cluster of ASD-associated mutations surrounding the critical amino acid in NLGN4X, and these mutations phenocopy NLGN4Y. We show that NLGN4Y cannot compensate for the functional deficits observed in ASD-associated NLGN4X mutations. Altogether, our data reveal a potential pathogenic mechanism for male bias in NLGN4X-associated ASD.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Neuronas/metabolismo , Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual/genética , Masculino , Mutación , Transporte de Proteínas/genética
17.
J Neurochem ; 154(2): 121-143, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31978252

RESUMEN

The N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate the flux of calcium (Ca2+ ) into the post-synaptic compartment. Ca2+ influx subsequently triggers the activation of various intracellular signalling cascades that underpin multiple forms of synaptic plasticity. Functional NMDARs are assembled as heterotetramers composed of two obligatory GluN1 subunits and two GluN2 or GluN3 subunits. Four different GluN2 subunits (GluN2A-D) are present throughout the central nervous system; however, they are differentially expressed, both developmentally and spatially, in a cell- and synapse-specific manner. Each GluN2 subunit confers NMDARs with distinct ion channel properties and intracellular trafficking pathways. Regulated membrane trafficking of NMDARs is a dynamic process that ultimately determines the number of NMDARs at synapses, and is controlled by subunit-specific interactions with various intracellular regulatory proteins. Here we review recent progress made towards understanding the molecular mechanisms that regulate the trafficking of GluN2-containing NMDARs, focusing on the roles of several key synaptic proteins that interact with NMDARs via their carboxyl termini.


Asunto(s)
Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Espinas Dendríticas/metabolismo , Humanos , Subunidades de Proteína/metabolismo , Transporte de Proteínas/fisiología
18.
Cell Rep ; 29(10): 2944-2952.e5, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801062

RESUMEN

The RhoGEFs Kalirin-7 and Trio are regulators of synaptic plasticity, and their dysregulation is associated with a range of neurodevelopmental and neurodegenerative disorders. Although studies have implicated both Kalirin and Trio in certain diseases, such as tauopathies, they remarkably differ in their association with other disorders. Using unbiased proteomics, we identified interactomes of Kalirin-7 and Trio to ascertain distinct protein association networks associated with their respective function and revealed groups of proteins that preferentially interact with a particular RhoGEF. In comparison, we find Trio interacts with a range of axon guidance and presynaptic complexes, whereas Kalirin-7 associates with several synaptic adhesion molecules. Specifically, we show Kalirin-7 is an interactor of the cell adhesion molecule neuroligin-1 (NLGN1), and NLGN1-dependent synaptic function is mediated through Kalirin-7 in an interaction-dependent manner. Our data reveal not only the interactomes of two important disease-related proteins, but also provide an intracellular effector of NLGN1 function.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Sinapsis/metabolismo
19.
J Neurodev Disord ; 11(1): 15, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31362710

RESUMEN

BACKGROUND: Rett syndrome is a neurodevelopmental disorder caused by a mutation in the X-linked MECP2 gene. Individuals with Rett syndrome typically develop normally until around 18 months of age before undergoing a developmental regression, and the disorder can lead to cognitive, motor, sensory, and autonomic dysfunction. Understanding the mechanism of developmental regression represents a unique challenge when viewed through a neuroscience lens. Are circuits that were previously established erased, and are new ones built to supplant old ones? One way to examine circuit-level changes is with the use of electroencephalography (EEG). Previous studies of the EEG in individuals with Rett syndrome have focused on morphological characteristics, but few have explored spectral power, including power as an index of brain function or disease severity. This study sought to determine if EEG power differs in girls with Rett syndrome and typically developing girls and among girls with Rett syndrome based on various clinical characteristics in order to better understand neural connectivity and cortical organization in individuals with this disorder. METHODS: Resting state EEG data were acquired from girls with Rett syndrome (n = 57) and typically developing children without Rett syndrome (n = 37). Clinical data were also collected for girls with Rett syndrome. EEG power across several brain regions in numerous frequency bands was then compared between girls with Rett syndrome and typically developing children and power in girls with Rett syndrome was compared based on these clinical measures. 1/ƒ slope was also compared between groups. RESULTS: Girls with Rett syndrome demonstrate significantly lower power in the middle frequency bands across multiple brain regions. Additionally, girls with Rett syndrome that are postregression demonstrate significantly higher power in the lower frequency delta and theta bands and a significantly more negative slope of the power spectrum. Increased power in these bands, as well as a more negative 1/ƒ slope, trended with lower cognitive assessment scores. CONCLUSIONS: Increased power in lower frequency bands is consistent with previous studies demonstrating a "slowing" of the background EEG in Rett syndrome. This increase, particularly in the delta band, could represent abnormal cortical inhibition due to dysfunctional GABAergic signaling and could potentially be used as a marker of severity due to associations with more severe Rett syndrome phenotypes.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiopatología , Electroencefalografía/métodos , Síndrome de Rett/fisiopatología , Biomarcadores , Femenino , Neuroimagen Funcional , Humanos , Lactante , Índice de Severidad de la Enfermedad
20.
J Biol Chem ; 294(30): 11498-11512, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31177092

RESUMEN

Neurolastin is a dynamin family GTPase that also contains a RING domain and exhibits both GTPase and E3 ligase activities. It is specifically expressed in the brain and is important for synaptic transmission, as neurolastin knockout animals have fewer dendritic spines and exhibit a reduction in functional synapses. Our initial study of neurolastin revealed that it is membrane-associated and partially co-localizes with endosomes. Using various biochemical and cell-culture approaches, we now show that neurolastin also localizes to mitochondria in HeLa cells, cultured neurons, and brain tissue. We found that the mitochondrial localization of neurolastin depends upon an N-terminal mitochondrial targeting sequence and that neurolastin is imported into the mitochondrial intermembrane space. Although neurolastin was only partially mitochondrially localized at steady state, it displayed increased translocation to mitochondria in response to neuronal stress and mitochondrial fragmentation. Interestingly, inactivation or deletion of neurolastin's RING domain also increased its mitochondrial localization. Using EM, we observed that neurolastin knockout animals have smaller but more numerous mitochondria in cerebellar Purkinje neurons, indicating that neurolastin regulates mitochondrial morphology. We conclude that the brain-specific dynamin GTPase neurolastin exhibits stress-responsive localization to mitochondria and is required for proper mitochondrial morphology.


Asunto(s)
Dinaminas/metabolismo , Mitocondrias/metabolismo , Células de Purkinje/metabolismo , Animales , Células Cultivadas , Dinaminas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/enzimología , Mutación , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...