Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Behav Neurosci ; 17: 1111908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324523

RESUMEN

Computer vision has emerged as a powerful tool to elevate behavioral research. This protocol describes a computer vision machine learning pipeline called AlphaTracker, which has minimal hardware requirements and produces reliable tracking of multiple unmarked animals, as well as behavioral clustering. AlphaTracker pairs a top-down pose-estimation software combined with unsupervised clustering to facilitate behavioral motif discovery that will accelerate behavioral research. All steps of the protocol are provided as open-source software with graphic user interfaces or implementable with command-line prompts. Users with a graphical processing unit (GPU) can model and analyze animal behaviors of interest in less than a day. AlphaTracker greatly facilitates the analysis of the mechanism of individual/social behavior and group dynamics.

2.
PLoS Biol ; 21(4): e3002087, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37018375

RESUMEN

Aging is often accompanied by an increased risk of an array of diseases spanning the cardiovascular, nervous, and immune systems, among others. Despite remarkable progress in understanding the cellular and molecular mechanisms involved in aging, the role of the microbiome remains understudied. In this Essay, we highlight recent progress towards understanding if and how the microbiome contributes to aging and age-associated diseases. Furthermore, we discuss the need to consider sexually dimorphic phenotypes in the context of aging and the microbiome. We also highlight the broad implications for this emerging area of interdisciplinary research to address long-standing questions about host-microbiome interactions across the life span.


Asunto(s)
Microbiota , Microbiota/fisiología , Sistema Inmunológico
3.
Nature ; 603(7902): 667-671, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296862

RESUMEN

Most social species self-organize into dominance hierarchies1,2, which decreases aggression and conserves energy3,4, but it is not clear how individuals know their social rank. We have only begun to learn how the brain represents social rank5-9 and guides behaviour on the basis of this representation. The medial prefrontal cortex (mPFC) is involved in social dominance in rodents7,8 and humans10,11. Yet, precisely how the mPFC encodes relative social rank and which circuits mediate this computation is not known. We developed a social competition assay in which mice compete for rewards, as well as a computer vision tool (AlphaTracker) to track multiple, unmarked animals. A hidden Markov model combined with generalized linear models was able to decode social competition behaviour from mPFC ensemble activity. Population dynamics in the mPFC predicted social rank and competitive success. Finally, we demonstrate that mPFC cells that project to the lateral hypothalamus promote dominance behaviour during reward competition. Thus, we reveal a cortico-hypothalamic circuit by which the mPFC exerts top-down modulation of social dominance.


Asunto(s)
Hipotálamo , Corteza Prefrontal , Animales , Área Hipotalámica Lateral , Ratones , Recompensa , Conducta Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...