Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
medRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39148850

RESUMEN

Importance: Epilepsy is the most common neurological disorder of childhood. Identifying genetic diagnoses underlying epilepsy is critical to developing effective therapies and improving outcomes. Most children with non-acquired (unexplained) epilepsy remain genetically unsolved, and the utility of genome sequencing after nondiagnostic exome sequencing is unknown. Objective: To determine the diagnostic (primary) and clinical (secondary) utility of genome sequencing after nondiagnostic exome sequencing in individuals with unexplained pediatric epilepsy. Design: This cohort study performed genome sequencing and comprehensive analyses for 125 participants and available biological parents enrolled from August 2018 to May 2023, with data analysis through April 2024 and clinical return of diagnostic and likely diagnostic genetic findings. Clinical utility was evaluated. Setting: Pediatric referral center. Participants: Participants with unexplained pediatric epilepsy and previous nondiagnostic exome sequencing; biological parents when available. Exposures: Short-read genome sequencing and analysis. Main Outcomes and Measures: Primary outcome measures were the diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding, and the unique diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding that required genome sequencing. The secondary outcome measure was clinical utility of genome sequencing, defined as impact on evaluation, treatment, or prognosis for the participant or their family. Results: 125 participants (58 [46%] female) were enrolled with median age at seizure onset 3 [IQR 1.25, 8] years, including 44 (35%) with developmental and epileptic encephalopathies. The diagnostic yield of genome sequencing was 7.2% (9/125), with diagnostic genetic findings in five cases and likely diagnostic genetic findings in four cases. Among the solved cases, 7/9 (78%) required genome sequencing for variant detection (small copy number variant, three noncoding variants, and three difficult to sequence small coding variants), for a unique diagnostic yield of genome sequencing of 5.6% (7/125). Clinical utility was documented for 4/9 solved cases (44%). Conclusions and Relevance: These findings suggest that genome sequencing can have diagnostic and clinical utility after nondiagnostic exome sequencing and should be considered for patients with unexplained pediatric epilepsy.

2.
Am J Hum Genet ; 111(8): 1544-1558, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39079538

RESUMEN

Recurrent copy-number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder. Duplication of 15q11-q13 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of autism more than 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown. To identify the cell-type-specific transcriptional and epigenetic effects of dup15q in the human frontal cortex, we conducted single-nucleus RNA sequencing and multi-omic sequencing on dup15q-affected individuals (n = 6) as well as individuals with non-dup15q autism (n = 7) and neurotypical control individuals (n = 7). Cell-type-specific differential expression analysis identified significantly regulated genes, critical biological pathways, and differentially accessible genomic regions. Although there was overall increased gene expression across the duplicated genomic region, cellular identity represented an important factor mediating gene-expression changes. As compared to other cell types, neuronal subtypes showed greater upregulation of gene expression across a critical region within the duplication. Genes that fell within the duplicated region and had high baseline expression in control individuals showed only modest changes in dup15q, regardless of cell type. Of note, dup15q and autism had largely distinct signatures of chromatin accessibility but shared the majority of transcriptional regulatory motifs, suggesting convergent biological pathways. However, the transcriptional binding-factor motifs implicated in each condition implicated distinct biological mechanisms: neuronal JUN and FOS networks in autism vs. an inflammatory transcriptional network in dup15q microglia. This work provides a cell-type-specific analysis of how dup15q changes gene expression and chromatin accessibility in the human brain, and it finds evidence of marked cell-type-specific effects of this genetic driver. These findings have implications for guiding therapeutic development in dup15q syndrome, as well as understanding the functional effects of copy-number variants more broadly in neurodevelopmental disorders.


Asunto(s)
Trastorno Autístico , Encéfalo , Cromosomas Humanos Par 15 , Variaciones en el Número de Copia de ADN , Humanos , Cromosomas Humanos Par 15/genética , Encéfalo/metabolismo , Encéfalo/patología , Masculino , Trastorno Autístico/genética , Femenino , Trastorno del Espectro Autista/genética , Duplicación Cromosómica/genética , Cromatina/genética , Cromatina/metabolismo , Trisomía/genética , Niño , Neuronas/metabolismo , Neuronas/patología , Aberraciones Cromosómicas , Discapacidad Intelectual
3.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826276

RESUMEN

Recurrent copy number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder (ASD). Duplication of 15q11.2-13.1 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of ASD by over 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown. To identify the cell-type-specific transcriptional and epigenetic effects of dup15q in the human frontal cortex we conducted single-nucleus RNA-sequencing and multi-omic sequencing on dup15q cases (n=6) as well as non-dup15q ASD (n=7) and neurotypical controls (n=7). Cell-type-specific differential expression analysis identified significantly regulated genes, critical biological pathways, and differentially accessible genomic regions. Although there was overall increased gene expression across the duplicated genomic region, cellular identity represented an important factor mediating gene expression changes. Neuronal subtypes, showed greater upregulation of gene expression across a critical region within the duplication as compared to other cell types. Genes within the duplicated region that had high baseline expression in control individuals showed only modest changes in dup15q, regardless of cell type. Of note, dup15q and ASD had largely distinct signatures of chromatin accessibility, but shared the majority of transcriptional regulatory motifs, suggesting convergent biological pathways. However, the transcriptional binding factor motifs implicated in each condition implicated distinct biological mechanisms; neuronal JUN/FOS networks in ASD vs. an inflammatory transcriptional network in dup15q microglia. This work provides a cell-type-specific analysis of how dup15q changes gene expression and chromatin accessibility in the human brain and finds evidence of marked cell-type-specific effects of this genetic driver. These findings have implications for guiding therapeutic development in dup15q syndrome, as well as understanding the functional effects CNVs more broadly in neurodevelopmental disorders.

4.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167325, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38925485

RESUMEN

The mechanism(s) underlying obesity-related postmenopausal (PM) breast cancer (BC) are not clearly understood. We hypothesized that the increased local presence of 'obese' mammary adipocytes within the BC microenvironment promotes the acquisition of an invasive and angiogenic BC cell phenotype and accelerates tumor proliferation and progression. BC cells, treated with primary mammary adipocyte secretome from premenopausal (Pre-M) and PM obese women (ObAdCM; obese adipocyte conditioned-media) upregulated the expression of several pro-tumorigenic factors including VEGF, lipocalin-2 and IL-6. Both Pre-M and PM ObAdCM stimulated endothelial cell recruitment and proliferation and significantly stimulated BC cell proliferation, migration and invasion. IL-6 and LCN2 induced STAT3/Akt signaling in BC cells and STAT3 inhibition abrogated the ObAdCM-stimulated BC cell proliferation and migration. Expression of proangiogenic regulators including VEGF, NRP1, NRP2, IL8RB, TGFß2, and TSP-1 were found to be differentially regulated in mammary adipocytes from obese PM women. Comparative RNAseq indicated an upregulation of PI3K/Akt signaling, ECM-receptor interactions and lipid/fatty acid metabolism in PM versus Pre-M mammary adipocytes. Our results demonstrate that irrespective of menopausal status, cross-talk between obese mammary adipocytes and BC cells promotes tumor aggressiveness and suggest that targeting the LCN2/IL-6/STAT3 signaling axis may be a useful strategy in obesity-driven breast tumorigenesis.


Asunto(s)
Adipocitos , Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Neovascularización Patológica , Obesidad , Factor de Transcripción STAT3 , Femenino , Humanos , Adipocitos/metabolismo , Adipocitos/patología , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Interleucina-6/metabolismo , Lipocalina 2/metabolismo , Lipocalina 2/genética , Menopausia/metabolismo , Invasividad Neoplásica , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Obesidad/metabolismo , Obesidad/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Microambiente Tumoral
5.
Birth Defects Res ; 116(3): e2331, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38526198

RESUMEN

BACKGROUND: Human studies of genetic risk factors for neural tube defects, severe birth defects associated with long-term health consequences in surviving children, have predominantly been restricted to a subset of candidate genes in specific biological pathways including folate metabolism. METHODS: In this study, we investigated the association of genetic variants spanning the genome with risk of spina bifida (i.e., myelomeningocele and meningocele) in a subset of families enrolled from December 2016 through December 2022 in a case-control study in Bangladesh, a population often underrepresented in genetic studies. Saliva DNA samples were analyzed using the Illumina Global Screening Array. We performed genetic association analyses to compare allele frequencies between 112 case and 121 control children, 272 mothers, and 128 trios. RESULTS: In the transmission disequilibrium test analyses with trios only, we identified three novel exonic spina bifida risk loci, including rs140199800 (SULT1C2, p = 1.9 × 10-7), rs45580033 (ASB2, p = 4.2 × 10-10), and rs75426652 (LHPP, p = 7.2 × 10-14), after adjusting for multiple hypothesis testing. Association analyses comparing cases and controls, as well as models that included their mothers, did not identify genome-wide significant variants. CONCLUSIONS: This study identified three novel single nucleotide polymorphisms involved in biological pathways not previously associated with neural tube defects. The study warrants replication in larger groups to validate findings and to inform targeted prevention strategies.


Asunto(s)
Meningocele , Defectos del Tubo Neural , Disrafia Espinal , Niño , Humanos , Estudios de Casos y Controles , Bangladesh , Disrafia Espinal/genética
6.
bioRxiv ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38464009

RESUMEN

SELENON-Related Myopathy (SELENON-RM) is a rare congenital myopathy caused by mutations of the SELENON gene characterized by axial muscle weakness and progressive respiratory insufficiency. Muscle histopathology commonly includes multiminicores or a dystrophic pattern but is often non-specific. The SELENON gene encodes selenoprotein N (SelN), a selenocysteine-containing redox enzyme located in the endo/sarcoplasmic reticulum membrane where it colocalizes with mitochondria-associated membranes. However, the molecular mechanism(s) by which SelN deficiency causes SELENON-RM are undetermined. A hurdle is the lack of cellular and animal models that show assayable phenotypes. Here we report deep-phenotyping of SelN-deficient zebrafish and muscle cells. SelN-deficient zebrafish exhibit changes in embryonic muscle function and swimming activity in larvae. Analysis of single cell RNAseq data in a zebrafish embryo-atlas revealed coexpression between selenon and genes involved in glutathione redox pathway. SelN-deficient zebrafish and mouse myoblasts exhibit changes in glutathione and redox homeostasis, suggesting a direct relationship with SelN function. We report changes in metabolic function abnormalities in SelN-null myotubes when compared to WT. These results suggest that SelN has functional roles during zebrafish early development and myoblast metabolism.

7.
Sci Rep ; 14(1): 4240, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378873

RESUMEN

Patients with intestinal failure who receive long-term parenteral nutrition (PN) often develop intestinal failure-associated liver disease (IFALD). Although there are identified risk factors, the early pathogenesis is poorly understood and treatment options are limited. Here, we perform a transcriptomic analysis of liver tissue in a large animal IFALD model to generate mechanistic insights and identify therapeutic targets. Preterm Yorkshire piglets were provided PN or bottle-fed with sow-milk replacer for 14 days. Compared to bottle-fed controls, piglets receiving PN developed biochemical cholestasis by day of life 15 (total bilirubin 0.2 vs. 2.9 mg/dL, P = 0.01). RNA-Seq of liver tissue was performed. Ingenuity Pathway Analysis identified 747 differentially expressed genes (343 upregulated and 404 downregulated) with an adjusted P < 0.05 and a fold-change of > |1|. Enriched canonical pathways were identified, demonstrating broad activation of inflammatory pathways and inhibition of cell cycle progression. Potential therapeutics including infliximab, glucocorticoids, statins, and obeticholic acid were identified as predicted upstream master regulators that may reverse the PN-induced gene dysregulation. The early driver of IFALD in neonates may be inflammation with an immature liver; identified therapeutics that target the inflammatory response in the liver should be investigated as potential treatments.


Asunto(s)
Enfermedades Intestinales , Insuficiencia Intestinal , Hepatopatías , Fallo Hepático , Animales , Humanos , Femenino , Porcinos , Hepatopatías/genética , Hepatopatías/complicaciones , Enfermedades Intestinales/genética , Enfermedades Intestinales/complicaciones , Fallo Hepático/complicaciones , Inflamación/genética , Inflamación/complicaciones
8.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38297832

RESUMEN

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Asunto(s)
Síndrome de Cornelia de Lange , Discapacidad Intelectual , Humanos , Proteínas de Ciclo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/genética , Heterocigoto , Discapacidad Intelectual/genética , Mutación , Fenotipo
9.
J Invest Dermatol ; 144(8): 1784-1797.e4, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38286187

RESUMEN

Physical trauma disrupts skin barrier function. How the skin barrier recovers is not fully understood. We evaluated in mice the mechanism of skin barrier recovery after mechanical injury inflicted by tape stripping. Tape stripping disrupted skin barrier function as evidenced by increased transepidermal water loss. We show that tape stripping induces IL-1-, IL-23-, and TCRγδ+-dependent upregulation of cutaneous Il17a and Il22 expression. We demonstrate that IL-17A and IL-22 induce epidermal hyperplasia, promote neutrophil recruitment, and delay skin barrier function recovery. Neutrophil depletion improved the recovery of skin barrier function and decreased epidermal hyperplasia. Single-cell RNA sequencing and flow cytometry analysis of skin cells revealed basophil infiltration into tape-stripped skin. Basophil depletion upregulated Il17a expression, increased neutrophil infiltration, and delayed skin barrier recovery. Comparative analysis of genes differentially expressed in tape-stripped skin of basophil-depleted mice and Il17a-/- mice indicated that basophils counteract the effects of IL-17A on the expression of epidermal and lipid metabolism genes important for skin barrier integrity. Our results demonstrate that basophils play a protective role by downregulating Il17a expression after mechanical skin injury, thereby counteracting the adverse effect of IL-17A on skin barrier function recovery, and suggest interventions to accelerate this recovery.


Asunto(s)
Basófilos , Interleucina-17 , Interleucinas , Animales , Ratones , Basófilos/inmunología , Interleucina-17/metabolismo , Interleucinas/metabolismo , Interleucinas/genética , Piel/lesiones , Piel/patología , Piel/inmunología , Piel/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Interleucina-22 , Pérdida Insensible de Agua/inmunología , Ratones Endogámicos C57BL , Infiltración Neutrófila , Epidermis/lesiones , Epidermis/patología , Epidermis/inmunología , Epidermis/metabolismo , Recuperación de la Función , Femenino
10.
medRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37808847

RESUMEN

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.

11.
Ther Adv Rare Dis ; 4: 26330040231181406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621556

RESUMEN

Background: Due to racial, cultural, and linguistic marginalization, some populations experience disproportionate barriers to genetic testing in both clinical and research settings. It is difficult to track such disparities due to non-inclusive self-reported race and ethnicity categories within the electronic health record (EHR). Inclusion and access for all populations is critical to achieve health equity and to capture the full spectrum of rare genetic disease. Objective: We aimed to create revised race and ethnicity categories. Additionally, we identified racial and ethnic under-representation amongst three cohorts: (1) the general Boston Children's Hospital patient population (general BCH), (2) the BCH patient population that underwent clinical genomic testing (clinical sequencing), and (3) Children's Rare Disease Cohort (CRDC) research initiative participants. Design and Methods: Race and ethnicity data were collected from the EHRs of the general BCH, clinical sequencing, and CRDC cohorts. We constructed a single comprehensive set of race and ethnicity categories. EHR-based race and ethnicity variables were mapped within each cohort to the revised categories. Then, the numbers of patients within each revised race and ethnicity category were compared across cohorts. Results: There was a significantly lower percentage of Black or African American/African, non-Hispanic/non-Latine individuals in the CRDC cohort compared with the general BCH cohort, but there was no statistically significant difference between the CRDC and the clinical sequencing cohorts. There was a significantly lower percentage of multi-racial, Hispanic/Latine individuals in the CRDC cohort than the clinical sequencing cohort. White, non-Hispanic/non-Latine individuals were over-represented in the CRDC compared to the two other groups. Conclusion: We highlight underrepresentation of certain racial and ethnic populations in sequencing cohorts compared to the general hospital population. We propose a range of measures to address these disparities, to strive for equitable future precision medicine-based clinical care and for the benefit of the whole rare disease community.


Racial and ethnic representation amongst general clinics, clinics that provide genetic testing, and genomic-based research at Boston Children's Hospital Background: Individuals who identify as belonging to a race or ethnicity that has been historically excluded from mainstream cultural, political, and economic activities ('historically marginalized') experience barriers to clinical care. These barriers are further complicated for families touched by rare genetic conditions. Obstacles can present as accessibility issues (transportation, financial, linguistic), low-quality medical care, or inadequate inclusion in research. It is important to have representation within rare disease research so that the full scope of these conditions is understood, leading to better patient care for all, and for health equity. Objective: We aimed to (1) to create new and inclusive race and ethnicity categories for the electronic health record (EHR) and (2) identify differences in racial and ethnic representation amongst patients generally seen at Boston Children's Hospital (general BCH), those who received genetic testing in a clinic at Boston Children's Hospital (clinical sequencing), and participants who enrolled in the CRDC research project at Boston Children's Hospital (CRDC). Design and Methods: We combined race and ethnicity categories to make more inclusive options than existing EHR categories. Differences in race and ethnicity representation were observed when looking at the three different patient groups (general BCH, clinical sequencing, and CRDC). Results: We observed a lower percentage of individuals who self-identify as Black or African American/African, non-Hispanic/non-Latine in the genetic testing groups (both research and clinical) than in the general BCH group. Individuals who self-identify as multi-racial, Hispanic/Latine are also under-represented in the CRDC research compared to the two other groups. The highest population percentage seen in all groups was that of patients who identify as White, non-Hispanic/non-Latine. This group was over-represented in the research CRDC group compared to the two others. Conclusion: Our study found that patients who are historically marginalized are underrepresented in clinical genetic testing and genomic research studies compared to their White counterparts. In order to benefit all patients with rare genetic conditions, these differences must be addressed by improving access to specialty physicians/researchers and incorporating inclusive language in the EHR, clinics, and research protocols.

12.
Lancet Neurol ; 22(9): 812-825, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37596007

RESUMEN

BACKGROUND: Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS: We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS: Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION: Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING: American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre.


Asunto(s)
Epilepsia , Convulsiones Febriles , Masculino , Femenino , Recién Nacido , Humanos , Niño , Proyectos Piloto , Estudios de Cohortes , Estudios de Factibilidad , Epilepsia/diagnóstico , Epilepsia/genética , Ontario
13.
J Allergy Clin Immunol Pract ; 11(11): 3391-3399.e3, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37544429

RESUMEN

BACKGROUND: Debates on the allocation of medical resources during the coronavirus disease 2019 (COVID-19) pandemic revealed the need for a better understanding of immunological risk. Studies highlighted variable clinical outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in individuals with defects in both adaptive and innate immunity, suggesting additional contributions from other factors. Notably, none of these studies controlled for variables linked with social determinants of health. OBJECTIVE: To determine the contributions of determinants of health to risk of hospitalization for SARS-CoV-2 infection among individuals with inborn errors of immunodeficiencies. METHODS: This is a retrospective, single-center cohort study of 166 individuals with inborn errors of immunity, aged 2 months through 69 years, who developed SARS-CoV-2 infections from March 1, 2020, through March 31, 2022. Risks of hospitalization were assessed using a multivariable logistic regression analysis. RESULTS: The risk of SARS-CoV-2-related hospitalization was associated with underrepresented racial and ethnic populations (odds ratio [OR] 4.50; 95% confidence interval [95% CI] 1.57-13.4), a diagnosis of any genetically defined immunodeficiency (OR 3.32; 95% CI 1.24-9.43), obesity (OR 4.24; 95% CI 1.38-13.3), and neurological disease (OR 4.47; 95% CI 1.44-14.3). The COVID-19 vaccination was associated with reduced hospitalization risk (OR 0.52; 95% CI 0.31-0.81). Defects in T cell and innate immune function, immune-mediated organ dysfunction, and social vulnerability were not associated with increased risk of hospitalization after controlling for covariates. CONCLUSIONS: The associations between race, ethnicity, and obesity with increased risk of hospitalization for SARS-CoV-2 infection indicate the importance of variables linked with social determinants of health as immunological risk factors for individuals with inborn errors of immunity.


Asunto(s)
COVID-19 , Enfermedades de Inmunodeficiencia Primaria , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Estudios Retrospectivos , Estudios de Cohortes , Vacunas contra la COVID-19 , Obesidad , Hospitalización , Enfermedades de Inmunodeficiencia Primaria/epidemiología
14.
JAMA Netw Open ; 6(7): e2324380, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37471090

RESUMEN

Importance: Genomic advances inform our understanding of epilepsy and can be translated to patients as precision diagnoses that influence clinical treatment, prognosis, and counseling. Objective: To delineate the genetic landscape of pediatric epilepsy and clinical utility of genetic diagnoses for patients with epilepsy. Design, Setting, and Participants: This cohort study used phenotypic data from medical records and treating clinicians at a pediatric hospital to identify patients with unexplained pediatric-onset epilepsy. Exome sequencing was performed for 522 patients and available biological parents, and sequencing data were analyzed for single nucleotide variants (SNVs) and copy number variants (CNVs). Variant pathogenicity was assessed, patients were provided with their diagnostic results, and clinical utility was evaluated. Patients were enrolled from August 2018 to October 2021, and data were analyzed through December 2022. Exposures: Phenotypic features associated with diagnostic genetic results. Main Outcomes and Measures: Main outcomes included diagnostic yield and clinical utility. Diagnostic findings included variants curated as pathogenic, likely pathogenic (PLP), or diagnostic variants of uncertain significance (VUS) with clinical features consistent with the involved gene's associated phenotype. The proportion of the cohort with diagnostic findings, the genes involved, and their clinical utility, defined as impact on clinical treatment, prognosis, or surveillance, are reported. Results: A total of 522 children (269 [51.5%] male; mean [SD] age at seizure onset, 1.2 [1.4] years) were enrolled, including 142 children (27%) with developmental epileptic encephalopathy and 263 children (50.4%) with intellectual disability. Of these, 100 participants (19.2%) had identifiable genetic explanations for their seizures: 89 participants had SNVs (87 germline, 2 somatic mosaic) involving 69 genes, and 11 participants had CNVs. The likelihood of identifying a genetic diagnosis was highest in patients with intellectual disability (adjusted odds ratio [aOR], 2.44; 95% CI, 1.40-4.26), early onset seizures (aOR, 0.93; 95% CI, 0.88-0.98), and motor impairment (aOR, 2.19; 95% CI 1.34-3.58). Among 43 patients with apparently de novo variants, 2 were subsequently determined to have asymptomatic parents harboring mosaic variants. Of 71 patients who received diagnostic results and were followed clinically, 29 (41%) had documented clinical utility resulting from their genetic diagnoses. Conclusions and Relevance: These findings suggest that pediatric-onset epilepsy is genetically heterogeneous and that some patients with previously unexplained pediatric-onset epilepsy had genetic diagnoses with direct clinical implications.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Masculino , Femenino , Humanos , Estudios de Cohortes , Secuenciación del Exoma , Discapacidad Intelectual/epidemiología , Epilepsia/diagnóstico , Epilepsia/genética , Convulsiones
15.
medRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333367

RESUMEN

Background: Debates on the allocation of medical resources during the COVID-19 pandemic revealed the need for a better understanding of immunologic risk. Studies highlighted variable clinical outcomes of SARS-CoV-2 infections in individuals with defects in both adaptive and innate immunity, suggesting additional contributions from other factors. Notably, none of these studies controlled for variables linked with social determinants of health. Objective: To determine the contributions of determinants of health to risk of hospitalization for SARS-CoV-2 infection among individuals with inborn errors of immunodeficiencies. Methods: This is a retrospective, single-center cohort study of 166 individuals with inborn errors of immunity, aged two months through 69 years, who developed SARS-CoV-2 infections from March 1, 2020 through March 31, 2022. Risks of hospitalization was assessed using a multivariable logistic regression analysis. Results: The risk of SARS-CoV-2-related hospitalization was associated with underrepresented racial and ethnic populations (odds ratio [OR] 5.29; confidence interval [CI], 1.76-17.0), a diagnosis of any genetically-defined immunodeficiency (OR 4.62; CI, 1.60-14.8), use of B cell depleting therapy within one year of infection (OR 6.1; CI, 1.05-38.5), obesity (OR 3.74; CI, 1.17-12.5), and neurologic disease (OR 5.38; CI, 1.61-17.8). COVID-19 vaccination was associated with reduced hospitalization risk (OR 0.52; CI, 0.31-0.81). Defective T cell function, immune-mediated organ dysfunction, and social vulnerability were not associated with increased risk of hospitalization after controlling for covariates. Conclusions: The associations between race, ethnicity, and obesity with increased risk of hospitalization for SARS-CoV-2 infection indicate the importance of variables linked with social determinants of health as immunologic risk factors for individuals with inborn errors of immunity. Highlights: What is already known about this topic? Outcomes of SARS-CoV-2 infections in individuals with inborn errors of immunity (IEI) are highly variable. Prior studies of patients with IEI have not controlled for race or social vulnerability. What does this article add to our knowledge ? For individuals with IEI, hospitalizations for SARS-CoV-2 were associated with race, ethnicity, obesity, and neurologic disease. Specific types of immunodeficiency, organ dysfunction, and social vulnerability were not associated with increased risk of hospitalization. How does this study impact current management guidelines? Current guidelines for the management of IEIs focus on risk conferred by genetic and cellular mechanisms. This study highlights the importance of considering variables linked with social determinants of health and common comorbidities as immunologic risk factors.

16.
Proc Natl Acad Sci U S A ; 120(23): e2300052120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252957

RESUMEN

Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood. We applied single-nucleus RNA sequencing to postmortem frontal cortex and cerebellum from 7 individuals with premutation and matched controls (n = 6) to assess cell type-specific molecular neuropathology. We found only modest upregulation (~1.3-fold) of FMR1 in some glial populations associated with premutation expansions. In premutation cases, we also identified decreased astrocyte proportions in the cortex. Differential expression and gene ontology analysis demonstrated altered neuroregulatory roles of glia. Using network analyses, we identified cell type-specific and region-specific patterns of FMR1 protein target gene dysregulation unique to premutation cases, with notable network dysregulation in the cortical oligodendrocyte lineage. We used pseudotime trajectory analysis to determine how oligodendrocyte development was altered and identified differences in early gene expression in oligodendrocyte trajectories in premutation cases specifically, implicating early cortical glial developmental perturbations. These findings challenge dogma regarding extremely elevated FMR1 increases in FXTAS and implicate glial dysregulation as a critical facet of premutation pathophysiology, representing potential unique therapeutic targets directly derived from the human condition.


Asunto(s)
Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/patología , Temblor/genética , Expansión de Repetición de Trinucleótido , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ataxia/genética , Ataxia/patología , Encéfalo/metabolismo , Astrocitos/metabolismo
17.
Genes (Basel) ; 14(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37107537

RESUMEN

BACKGROUND: Children and adolescents with early-onset psychosis (EOP) have more rare genetic variants than individuals with adult-onset forms of the illness, implying that fewer EOP participants are needed for genetic discovery. The Schizophrenia Exome Sequencing Meta-analysis (SCHEMA) study predicted that 10 genes with ultra-rare variation were linked to adult-onset schizophrenia. We hypothesized that rare variants predicted "High" and "Moderate" by the Variant Effect Predictor Algorithm (abbreviated as VEPHMI) in these 10 genes would be enriched in our EOP cohort. METHODS: We compared rare VEPHMI variants in individuals with EOP (N = 34) with race- and sex-matched controls (N = 34) using the sequence kernel association test (SKAT). RESULTS: GRIN2A variants were significantly increased in the EOP cohort (p = 0.004), with seven individuals (20% of the EOP cohort) carrying a rare VEPHMI variant. The EOP cohort was then compared to three additional control cohorts. GRIN2A variants were significantly increased in the EOP cohort for two of the additional control sets (p = 0.02 and p = 0.02), and trending towards significance for the third (p = 0.06). CONCLUSION: Despite a small sample size, GRIN2A VEPHMI variant burden was increased in a cohort of individuals with EOP in comparison to controls. GRIN2A variants have been associated with a range of neuropsychiatric disorders including adult-onset psychotic spectrum disorder and childhood-onset schizophrenia. This study supports the role of GRIN2A in EOP and emphasizes its role in neuropsychiatric disorders.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Adulto , Adolescente , Humanos , Niño , Trastornos Psicóticos/genética , Esquizofrenia/genética , Pruebas Genéticas
18.
Adv Genet (Hoboken) ; 4(1): 2200013, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36910591

RESUMEN

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic pain disorder causing symptoms of urinary frequency, urgency, and bladder discomfort or pain. Although this condition affects a large population, little is known about its etiology. Genetic analyses of whole exome sequencing are performed on 109 individuals with IC/BPS. One family has a previously reported SIX5 variant (ENST00000317578.6:c.472G>A, p.Ala158Thr), consistent with Branchiootorenal syndrome 2 (BOR2). A likely pathogenic heterozygous variant in ATP2A2 (ENST00000539276.2:c.235G>A, p.Glu79Lys) is identified in two unrelated probands, indicating possible Darier-White disease. Two private heterozygous variants are identified in ATP2C1 (ENST00000393221.4:c.2358A>T, p.Glu786Asp (VUS/Likely Pathogenic) and ENST00000393221.4:c.989C>G, p.Thr330Ser (likely pathogenic)), indicative of Hailey-Hailey Disease. Sequence kernel association test analysis finds an increased burden of rare ATP2C1 variants in the IC/BPS cases versus a control cohort (p = 0.03, OR = 6.76), though does not survive Bonferroni correction. The data suggest that some individuals with IC/BPS may have unrecognized Mendelian syndromes. Comprehensive phenotyping and genotyping aid in understanding the range of diagnoses in the population-based IC/BPS cohort. Conversely, ATP2C1, ATP2A2, and SIX5 may be candidate genes for IC/BPS. Further evaluation with larger numbers is needed. Genetically screening individuals with IC/BPS may help diagnose and treat this painful disorder due to its heterogeneous nature.

19.
Proc Natl Acad Sci U S A ; 120(8): e2206878120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791099

RESUMEN

SET is a multifunctional histone-binding oncoprotein that regulates transcription by an unclear mechanism. Here we show that SET enhances estrogen-dependent transcription. SET knockdown abrogates transcription of estrogen-responsive genes and their enhancer RNAs. In response to 17ß-estradiol (E2), SET binds to the estrogen receptor α (ERα) and is recruited to ERα-bound enhancers and promoters at estrogen response elements (EREs). SET functions as a histone H2 chaperone that dynamically associates with H2A.Z via its acidic C-terminal domain and promotes H2A.Z incorporation, ERα, MLL1, and KDM3A loading and modulates histone methylation at EREs. SET depletion diminishes recruitment of condensin complexes to EREs and impairs E2-dependent enhancer-promoter looping. Thus, SET boosts E2-induced gene expression by establishing an active chromatin structure at ERα-bound enhancers and promoters, which is essential for transcriptional activation.


Asunto(s)
Cromatina , Histonas , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Línea Celular Tumoral , Estrógenos/metabolismo , Estradiol/farmacología , Proteínas Oncogénicas/metabolismo , Transcripción Genética
20.
Cells ; 11(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36497057

RESUMEN

Organoids have been used to investigate the three-dimensional (3D) organization and function of their respective organs. These self-organizing 3D structures offer a distinct advantage over traditional two-dimensional (2D) culture techniques by creating a more physiologically relevant milieu to study complex biological systems. The goal of this study was to determine the feasibility of establishing organoids from various pediatric liver diseases and characterize the long-term evolution of cholangiocyte organoids (chol-orgs) under a single continuous culture condition. We established chol-orgs from 10 different liver conditions and characterized their multicellular organization into complex epithelial structures through budding, merging, and lumen formation. Immunofluorescent staining, electron microscopy, and single-nucleus RNA (snRNA-seq) sequencing confirmed the cholangiocytic nature of the chol-orgs. There were significant cell population differences in the transcript profiles of two-dimensional and organoid cultures based on snRNA-seq. Our study provides an approach for the generation and long-term maintenance of chol-orgs from various pediatric liver diseases under a single continuous culture condition.


Asunto(s)
Células Epiteliales , Organoides , Humanos , Niño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA