Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(20): e202400174, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38466808

RESUMEN

The nature of the support can fundamentally affect the function of a heterogeneous catalyst. For the novel type of isolated metal atom catalysts, sometimes referred to as single-atom catalysts, systematic correlations are still rare. Here, we report a general finding that Pd on nitride supports (non-metal and metal nitride) features a higher oxidation state compared to that on oxide supports (non-metal and metal oxide). Through thorough oxidation state investigations by X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), CO-DRIFTS, and density functional theory (DFT) coupled with Bader charge analysis, it is found that Pd atoms prefer to interact with surface hydroxyl group to form a Pd(OH)x species on oxide supports, while on nitride supports, Pd atoms incorporate into the surface structure in the form of Pd-N bonds. Moreover, a correlation was built between the formal oxidation state and computational Bader charge, based on the periodic trend in electronegativity.

2.
Chem Sci ; 13(36): 10914-10922, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36320707

RESUMEN

Silica supported ultrasmall Ni-nanoparticles allow for general and selective hydrogenation of all kinds of nitriles to primary amines under mild conditions. By calcination of a template material generated from Ni(ii)nitrate and colloidal silica under air and subsequent reduction in the presence of molecular hydrogen the optimal catalyst is prepared. The prepared supported nanoparticles are stable, can be conveniently used and easily recycled. The applicability of the optimal catalyst material is shown by hydrogenation of >110 diverse aliphatic and aromatic nitriles including functionalized and industrially relevant substrates. Challenging heterocyclic nitriles, specifically cyanopyridines, provided the corresponding primary amines in good to excellent yields. The resulting amines serve as important precursors and intermediates for the preparation of numerous life science products and polymers.

3.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955876

RESUMEN

We communicate the assembly of a solid, Ce-promoted Ni-based composite that was applied as catalyst for the hydrogenation of nitroarenes to afford the corresponding organic amines. The catalytically active material described herein was obtained through pyrolysis of a SiO2-pellet-supported bimetallic Ni-Ce complex that was readily synthesized prior to use from a MeO-functionalized salen congener, Ni(OAc)2·4 H2O, and Ce(NO3)3·6 H2O. Rewardingly, the requisite ligand for the pertinent solution phase precursor was accessible upon straightforward and time-saving imine condensation of ortho-vanillin with 1,3-diamino-2,2'-dimethylpropane. The introduced catalytic protocol is operationally simple in that the whole reaction set-up is quickly put together on the bench without the need of cumbersome handling in a glovebox or related containment systems. Moreover, the advantageous geometry and compact-sized nature of the used pellets renders the catalyst separation and recycling exceptionally easy.


Asunto(s)
Níquel , Dióxido de Silicio , Aminas , Catálisis , Hidrogenación
4.
Chem Commun (Camb) ; 58(63): 8842-8845, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35848910

RESUMEN

A convenient and practical diastereoselective cis-hydrogenation of multi-substituted pyridines and arenes is reported. Applying a novel heterogeneous ruthenium catalyst, the corresponding piperidines and cyclohexanes are obtained in high yields (typically >80%) with a good functional group tolerance under mild conditions. The robust ruthenium supported catalyst is smoothly prepared and can be reused multiple times without activity loss.

5.
Angew Chem Int Ed Engl ; 61(27): e202202423, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35484978

RESUMEN

There is a constant need for deuterium-labelled products for multiple applications in life sciences and beyond. Here, a new class of heterogeneous catalysts is reported for practical deuterium incorporation in anilines, phenols, and heterocyclic substrates. The optimal material can be conveniently synthesised and allows for high deuterium incorporation using deuterium oxide as isotope source. This new catalyst has been fully characterised and successfully applied to the labelling of natural products as well as marketed drugs.


Asunto(s)
Electrones , Manganeso , Compuestos de Anilina , Catálisis , Deuterio
6.
iScience ; 25(3): 103886, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35243246

RESUMEN

Hydrogenation of CO2 is very attractive for transforming this greenhouse gas into valuable high energy density compounds. In this work, we developed a highly active and stable Ru/TiO2 catalyst for CO2 methanation prepared by a solgel method that revealed much higher activity in methanation of CO2 (ca. 4-14 times higher turnover frequencies at 140-210°C) than state-of-the-art Ru/TiO2 catalysts and a control sample prepared by wetness impregnation. This is attributed to a high concentration of O-vacancies, inherent to the solgel methodology, which play a dual role for 1) activation of CO2 and 2) transfer of electrons to interfacial Ru sites as evident from operando DRIFTS and in situ EPR investigations. These results suggest that charge transfer from O-vacancies to interfacial Ru sites and subsequent electron donation from filled metal d-orbitals to antibonding orbitals of adsorbed CO are decisive factors in boosting the CO2 methanation activity.

7.
Nat Chem ; 14(3): 334-341, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027706

RESUMEN

Isotope labelling, particularly deuteration, is an important tool for the development of new drugs, specifically for identification and quantification of metabolites. For this purpose, many efficient methodologies have been developed that allow for the small-scale synthesis of selectively deuterated compounds. Due to the development of deuterated compounds as active drug ingredients, there is a growing interest in scalable methods for deuteration. The development of methodologies for large-scale deuterium labelling in industrial settings requires technologies that are reliable, robust and scalable. Here we show that a nanostructured iron catalyst, prepared by combining cellulose with abundant iron salts, permits the selective deuteration of (hetero)arenes including anilines, phenols, indoles and other heterocycles, using inexpensive D2O under hydrogen pressure. This methodology represents an easily scalable deuteration (demonstrated by the synthesis of deuterium-containing products on the kilogram scale) and the air- and water-stable catalyst enables efficient labelling in a straightforward manner with high quality control.


Asunto(s)
Hidrógeno , Catálisis , Deuterio
8.
Chem Sci ; 12(42): 14033-14038, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34760186

RESUMEN

The introduction of deuterium atoms into organic compounds is of importance for basic chemistry, material sciences, and the development of drugs in the pharmaceutical industry, specifically for identification and quantification of metabolites. Hence, methodologies for the synthesis of selectively labelled compounds continue to be a major area of interest for many scientists. Herein, we present a practical and stable heterogeneous copper catalyst, which permits for dehalogenative deuteration via water-gas shift reaction at comparably low temperature. This novel approach allows deuteration of diverse (hetero)aryl halides with good functional group tolerance, and no reduction of the aromatic rings or other easily reducible formyl and cyano groups. Multi-gram experiments show the potential of this method in organic synthesis and medicinal chemistry.

9.
ChemistryOpen ; 10(5): 600-606, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34028203

RESUMEN

Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) offers a renewable approach to produce the value-added platform chemical 2,5-furandicarboxylic acid (FDCA). The key for the economic viability of this approach is to develop active and selective electrocatalysts. Nevertheless, a reliable catalyst evaluation protocol is still missing, leading to elusive conclusions on criteria for a high-performing catalyst. Herein, we demonstrate that besides the catalyst identity, secondary parameters such as materials of conductive substrates for the working electrode, concentration of the supporting electrolyte, and electrolyzer configurations have profound impact on the catalyst performance and thus need to be optimized before assessing the true activity of a catalyst. Moreover, we highlight the importance of those secondary parameters in suppressing side reactions, which has long been overlooked. The protocol is validated by evaluating the performance of free-standing Cu-foam, and CuCoO modified with NaPO2 H2 and Ni, which were immobilized on boron-doped diamond (BDD) electrodes. Recommended practices and figure of merits in carefully evaluating the catalyst performance are proposed.

10.
Chemphyschem ; 22(7): 693-700, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33410580

RESUMEN

Time-resolved X-ray absorption spectroscopy has been utilized to monitor the bimolecular electron transfer in a photocatalytic water splitting system. This has been possible by uniting the local probe and element specific character of X-ray transitions with insights from high-level ab initio calculations. The specific target has been a heteroleptic [IrIII (ppy)2 (bpy)]+ photosensitizer, in combination with triethylamine as a sacrificial reductant and Fe3(CO)12 as a water reduction catalyst. The relevant molecular transitions have been characterized via high-resolution Ir L-edge X-ray absorption spectroscopy on the picosecond time scale and restricted active space self-consistent field calculations. The presented methods and results will enhance our understanding of functionally relevant bimolecular electron transfer reactions and thus will pave the road to rational optimization of photocatalytic performance.

11.
Chem Commun (Camb) ; 56(85): 13021-13024, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33000811

RESUMEN

This paper demonstrates the potential of Eu2O3 and Gd2O3 as catalysts for non-oxidative propane dehydrogenation to propene. They reveal a higher activity than the state-of-the-art bare ZrO2-based catalysts due to the higher intrinsic activity of Gdcus or Eucus in comparison with that of Zrcus (cus = coordinatively unsaturated).

12.
Chem Sci ; 10(35): 8195-8201, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31857885

RESUMEN

The selective catalytic hydrogenation of nitriles represents an important but challenging transformation for many homogeneous and heterogeneous catalysts. Herein, we report the efficient and modular solid-phase synthesis of immobilized Triphos-type ligands in very high yields, involving only minimal work-up procedures. The corresponding supported ruthenium-Triphos catalysts are tested in the hydrogenation of various nitriles. Under mild conditions and without the requirement of additives, the tunable supported catalyst library provides selective access to both primary amines and secondary imines. Moreover, the first application of a Triphos-type catalyst in a continuous flow process is presented demonstrating high catalyst life-time over at least 195 hours without significant activity loss.

13.
Langmuir ; 34(8): 2663-2673, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29397744

RESUMEN

This work reports the synthesis of heterostructured copper-ceria and iron-ceria nanorods and the role of their morphology, redox, and acid properties in catalytic diesel soot combustion. Microscopy images show the presence of nanocrystalline CuO (9.5 ± 0.5 nm) and Fe2O3 (7.3 ± 0.5 nm) particles on the surface of CeO2 nanorods (diameter is 8.5 ± 2 nm and length within 16-89 nm). In addition to diffraction peaks of CuO and Fe2O3 nanocrystallites, X-ray diffraction (XRD) studies reveal doping of Cu2+ and Fe3+ ions into the fluorite lattice of CeO2, hence abundant oxygen vacancies in the Cu/CeO2 and Fe/CeO2 nanorods, as evidenced by Raman spectroscopy studies. XRD and Raman spectroscopy studies further show substantial perturbations in Cu/CeO2 rods, resulting in an improved reducibility of bulk cerium oxide and formation of abundant Lewis acid sites, as investigated by H2-temperature-programmed reduction and pyridine-adsorbed Fourier transform infrared studies, respectively. The Cu/CeO2 rods catalyze the soot oxidation reaction at the lowest temperatures under both tight contact (Cu/CeO2; T50 = 358 °C, temperature at which 50% soot conversion is achieved, followed by Fe/CeO2; T50 = 368 °C and CeO2; T50 = 433 °C) and loose contact conditions (Cu/CeO2; T50 = 419 °C and Fe/CeO2; T50 = 435 °C). A possible mechanism based on the synergetic effect of redox and acid properties of Cu/CeO2 nanorods was proposed: acid sites can activate soot particles to form reactive carbon species, which are oxidized by gaseous oxygen/lattice oxygen activated in the oxygen vacancies (redox sites) of ceria rods.

14.
Chemistry ; 23(2): 312-319, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27768809

RESUMEN

A series of heteroleptic copper(I) photosensitizers of the type [(P^P)Cu(N^N)]+ with an extended π-system in the backbone of the diimine ligand has been prepared. The structures of all complexes are completely characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. These novel photosensitizers were assessed with respect to the photocatalytic reduction of protons in the presence of triethylamine and [Fe3 (CO)12 ]. Although the solid-state structures and computational results show no significant impact of the π-extension on the structural properties, decreased activities were observed. To explain this drop, a combination of electrochemical and photophysical measurements including time-resolved emission as well as transient absorption spectroscopy in the femto- to nanosecond time regime was used. Consequently, shortened excited state lifetimes caused by the rapid depopulation of the excited states located at the diimine ligand are identified as a major reason for the low photocatalytic performance.

15.
Phys Chem Chem Phys ; 18(16): 10682-7, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27006105

RESUMEN

Time-resolved spectroscopy was applied to investigate the excited state dynamics of two heteroleptic Ir(III) complexes with the general formula [Ir(C^N)2(N^N)](+), where C^N and N^N represent different cyclometalating and diimine ligands, respectively. The excited state relaxation is influenced by the ligand substitution as well as the light polarisation. Vibrational relaxation occurs in the sub-ps timescale and interligand charge transfer results in polarisation dependent signal dynamics with a time constant of about 30 ps. Electron injection from the iridium dye to TiO2 is analysed with respect to potential applications in solar energy conversion.

16.
Chemistry ; 22(4): 1233-8, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26691442

RESUMEN

The reduction of water has been achieved through a non-noble-metal-based homogeneous catalyst system that is formed in situ. Optimisation of the ligand quantities increased catalyst turnover numbers compared to preformed complexes. Mechanistic studies confirm a heteroleptic Cu complex as the active photosensitiser (PS) and an in situ formed Fe-phosphido dimer complex as the water reduction catalyst. The in situ method has been used to screen a range of ligands for the active PS, which has led to the identification a number of structural features important to longevity and performance.

17.
Dalton Trans ; 44(1): 330-7, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25381808

RESUMEN

A supramolecular reaction system is reported where a labile molecular metal oxide cluster enables the unprecedented dimerisation of ruthenium photosensitizers [Ru(L)2(tmbiH2)](2+) (L = 4,4'-di-tert-butyl-2,2'-bipyridine (1a) or 2,2'-bipyridine (1b); tmbiH2 = 5,5',6,6'-tetramethyl-2,2'-bibenzimidazole). In the presence of [Mo8O26](4-) clusters (2) the dimerisation is triggered by the in situ conversion of [Mo8O26](4-) to [Mo6O19](2-) which results in the release of hydroxide ions. Simultaneous deprotonation of the pH-sensitive tmbiH2-ligands starts the dimerisation, resulting in the formation of the dinuclear complex [(Ru(L)2)2(tmbi)](2+) (L = 4,4'-di-tert-butyl-2,2'-bipyridine (3) or 2,2'-bipyridine (4)). The dimerisation reaction can be suppressed when 2 is replaced by a stable polyoxomolybdate cluster, [Mo5O15(PhPO3)2](4-) (5) and the reaction between 1a and 5 leads to the formation of hydrogen-bonded supramolecular aggregates 6. The solution and solid-state interactions in these systems were investigated using a range of spectroscopic and crystallographic techniques and compounds 3, 4 and 6 were characterized using single-crystal XRD.

18.
Chemphyschem ; 15(17): 3709-13, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25236384

RESUMEN

Four different heteroleptic [Cu(N^N)(P^P)]PF6 complexes, which combine classical bidentate diimine ligands and sterically demanding diphosphine ligands, are studied by a combination of ultrafast time-resolved spectroscopy and quantum chemical calculations. The light-induced excited state processes, accompanied by a structural change, are discussed with respect to the application of these complexes as a new class of noble-metal-free photosensitizers in proton reducing systems. In particular, the influence of different substituents in the ligand backbone on the photophysical properties is highlighted.

19.
Dalton Trans ; 43(47): 17659-65, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25146602

RESUMEN

The photophysical properties of Ruthenium-bipyridine complexes bearing a bibenzimidazole ligand were investigated. The nitrogens on the bibenzimidazole-ligand were protected, by adding either a phenylene group or a 1,2-ethandiyl group, to remove the photophysical dependence of the complex on the protonation state of the bibenzimidazole ligand. This protection results in the bibenzimidazole ligand contributing to the MLCT transition, which is experimentally evidenced by (resonance) Raman scattering in concert with DFT calculations for a detailed mode assignment in the (resonance) Raman spectra.


Asunto(s)
Bencimidazoles/química , Compuestos Organometálicos/química , Piridinas/química , Rutenio/química , Ligandos , Compuestos Organometálicos/síntesis química , Procesos Fotoquímicos , Teoría Cuántica , Espectrometría Raman
20.
Angew Chem Int Ed Engl ; 53(27): 7085-8, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24888820

RESUMEN

Formate salts are important chemicals widely used in everyday products. The current industrial-scale manufacture of formates requires CO at high pressure and harsh reaction conditions. Herein, we describe a new process for these products without the utilization of hazardous gases and chemicals. By application of ruthenium pincer complexes, a simultaneous methanol dehydrogenation and bicarbonate hydrogenation reaction proceeds, which provides a green synthesis of formate salts with excellent TON (>18,000), TOF (>1300 h(-1)), and yield (>90%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...