Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oecologia ; 179(3): 823-34, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26123246

RESUMEN

Changes in species richness along the ecological succession gradient may be strongly determined by coexisting extinction debts of species from the original habitats and colonization credits of those from the replacing habitats. The magnitude of these processes and their causes remain largely unknown. We explored the extinction debt and colonization credit for grassland and forest specialist plants, respectively, and the local and landscape factors associated to the richness of these species groups in a 50-year process of forest encroachment into semi-natural Mediterranean grasslands. A set of sampling plots of persistent grasslands and forests and their transitional habitat (wooded grasslands) was selected within fixed-area sites distributed across the landscape. Our results confirm the extinction debt and suggest colonization credit (according to observed trends and model predictions) in wooded grasslands when compared to persistent forests, despite wooded grasslands and persistent forests having similar tree cover. Grassland connectivity and solar radiation had opposing effects on the richness of both grassland and forest specialists, and it is possible that the availability of seed sources from old forests may have accelerate the payment of colonization credit in the wooded grasslands. These results suggest that extinction debt and colonization credit have driven species turnover during the 50 years of forest encroachment, but at different rates, and that local and landscape factors have opposing effects on these two phenomena. They also highlight the importance of documenting biodiversity time lags following habitat change when they are still in progress in order to timely and adequately manage habitats of high conservation value such as the grasslands studied here.


Asunto(s)
Biodiversidad , Extinción Biológica , Bosques , Pradera , Ecosistema , Región Mediterránea
2.
Sci Total Environ ; 434: 18-27, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22200374

RESUMEN

Surface water chemistry has changed in response to reduced atmospheric deposition of sulphur and acidity in many regions of Europe and North America. Most of these studies come from acidic or low-alkalinity surface waters under high acidic deposition. Mediterranean climates offer a different biogeochemical context, characterised by streamwaters of higher alkalinity and low acid inputs. In this paper, we use surveys of streamwater chemistry conducted in 1981-1984 and again in 2007 in the Montseny natural park (NE Spain) to test whether streamwaters of these well-buffered catchments respond to changes in atmospheric deposition, which has declined for S during the last decades in NE Spain while remaining about stable for nitrogen. The 23 sampled streams drained heathland, beech forests and evergreen oak forests in relatively undisturbed small catchments underlain by silicate bedrock. Bulk deposition of sulphate at Montseny decreased by 54% while nitrate bulk deposition increased (non-significantly) by 30% in this period. Total N deposition is estimated in the range 15-30 kg N ha(-1) y(-1) for NE Spain. This is well above threshold values (e.g. 10 kg N ha(-1) y(-1)) reported as starting nitrogen saturation symptoms in forest ecosystems in Europe. Baseflow sulphate concentrations decreased on average by 47 µeq L(-1) or 29% of early 1980s concentrations. Baseflow mean nitrate concentrations increased significantly but only from 5.5 to 8.9 µeq L(-1). Thus, despite decades of high N deposition, these ecosystems appear to be still far from N saturation. Baseflow alkalinity and base cation concentrations increased substantially, probably a combined result of decreased S deposition, enhanced silicate weathering under current higher temperatures, reduced plant cation uptake as vegetation matures, and slightly drier conditions in the survey of 2007. Overall, these well-buffered catchments have shown sizable changes in baseflow chemistry in response to changed atmospheric deposition and other environmental changes.


Asunto(s)
Atmósfera , Contaminación del Agua , Clima , Región Mediterránea
3.
Trends Ecol Evol ; 24(10): 564-71, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19665254

RESUMEN

Local extinction of species can occur with a substantial delay following habitat loss or degradation. Accumulating evidence suggests that such extinction debts pose a significant but often unrecognized challenge for biodiversity conservation across a wide range of taxa and ecosystems. Species with long generation times and populations near their extinction threshold are most likely to have an extinction debt. However, as long as a species that is predicted to become extinct still persists, there is time for conservation measures such as habitat restoration and landscape management. Standardized long-term monitoring, more high-quality empirical studies on different taxa and ecosystems and further development of analytical methods will help to better quantify extinction debt and protect biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Extinción Biológica , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA