Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(10): 105161, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37586588

RESUMEN

Chorismate mutase (CM) and cyclohexadienyl dehydratase (CDT) catalyze two subsequent reactions in the intracellular biosynthesis of l-phenylalanine (Phe). Here, we report the discovery of novel and extremely rare bifunctional fusion enzymes, consisting of fused CM and CDT domains, which are exported from the cytoplasm. Such enzymes were found in only nine bacterial species belonging to non-pathogenic γ- or ß-Proteobacteria. In γ-proteobacterial fusion enzymes, the CM domain is N-terminal to the CDT domain, whereas the order is inverted in ß-Proteobacteria. The CM domains share 15% to 20% sequence identity with the AroQγ class CM holotype of Mycobacterium tuberculosis (∗MtCM), and the CDT domains 40% to 60% identity with the exported monofunctional enzyme of Pseudomonas aeruginosa (PheC). In vitro kinetics revealed a Km <7 µM, much lower than for ∗MtCM, whereas kinetic parameters are similar for CDT domains and PheC. There is no feedback inhibition of CM or CDT by the pathway's end product Phe, and no catalytic benefit of the domain fusion compared with engineered single-domain constructs. The fusion enzymes of Aequoribacter fuscus, Janthinobacterium sp. HH01, and Duganella sacchari were crystallized and their structures refined to 1.6, 1.7, and 2.4 Å resolution, respectively. Neither the crystal structures nor the size-exclusion chromatography show evidence for substrate channeling or higher oligomeric structure that could account for the cooperation of CM and CDT active sites. The genetic neighborhood with genes encoding transporter and substrate binding proteins suggests that these exported bifunctional fusion enzymes may participate in signaling systems rather than in the biosynthesis of Phe.

2.
Biochemistry ; 62(3): 782-796, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36705397

RESUMEN

Unlike typical chorismate mutases, the enzyme from Mycobacterium tuberculosis (MtCM) has only low activity on its own. Remarkably, its catalytic efficiency kcat/Km can be boosted more than 100-fold by complex formation with a partner enzyme. Recently, an autonomously fully active MtCM variant was generated using directed evolution, and its structure was solved by X-ray crystallography. However, key residues were involved in crystal contacts, challenging the functional interpretation of the structural changes. Here, we address these challenges by microsecond molecular dynamics simulations, followed up by additional kinetic and structural analyses of selected sets of specifically engineered enzyme variants. A comparison of wild-type MtCM with naturally and artificially activated MtCMs revealed the overall dynamic profiles of these enzymes as well as key interactions between the C-terminus and the active site loop. In the artificially evolved variant of this model enzyme, this loop is preorganized and stabilized by Pro52 and Asp55, two highly conserved residues in typical, highly active chorismate mutases. Asp55 stretches across the active site and helps to appropriately position active site residues Arg18 and Arg46 for catalysis. The role of Asp55 can be taken over by another acidic residue, if introduced at position 88 close to the C-terminus of MtCM, as suggested by molecular dynamics simulations and confirmed by kinetic investigations of engineered variants.


Asunto(s)
Corismato Mutasa , Mycobacterium tuberculosis , Corismato Mutasa/química , Simulación de Dinámica Molecular , Proyectos de Investigación , Cristalografía por Rayos X
3.
J Biol Chem ; 295(51): 17514-17534, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453995

RESUMEN

Chorismate mutase (CM), an essential enzyme at the branch-point of the shikimate pathway, is required for the biosynthesis of phenylalanine and tyrosine in bacteria, archaea, plants, and fungi. MtCM, the CM from Mycobacterium tuberculosis, has less than 1% of the catalytic efficiency of a typical natural CM and requires complex formation with 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase for high activity. To explore the full potential of MtCM for catalyzing its native reaction, we applied diverse iterative cycles of mutagenesis and selection, thereby raising kcat/Km 270-fold to 5 × 105m-1s-1, which is even higher than for the complex. Moreover, the evolutionarily optimized autonomous MtCM, which had 11 of its 90 amino acids exchanged, was stabilized compared with its progenitor, as indicated by a 9 °C increase in melting temperature. The 1.5 Å crystal structure of the top-evolved MtCM variant reveals the molecular underpinnings of this activity boost. Some acquired residues (e.g. Pro52 and Asp55) are conserved in naturally efficient CMs, but most of them lie beyond the active site. Our evolutionary trajectories reached a plateau at the level of the best natural enzymes, suggesting that we have exhausted the potential of MtCM. Taken together, these findings show that the scaffold of MtCM, which naturally evolved for mediocrity to enable inter-enzyme allosteric regulation of the shikimate pathway, is inherently capable of high activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Corismato Mutasa/metabolismo , Mycobacterium tuberculosis/enzimología , 3-Desoxi-7-Fosfoheptulonato Sintasa/química , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Corismato Mutasa/química , Corismato Mutasa/genética , Cristalografía por Rayos X , Evolución Molecular Dirigida , Cinética , Simulación de Dinámica Molecular , Mutagénesis , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Alineación de Secuencia , Ácido Shikímico/metabolismo , Temperatura de Transición
4.
Biochemistry ; 57(5): 557-573, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29178787

RESUMEN

Corynebacterium glutamicum is widely used for the industrial production of amino acids, nucleotides, and vitamins. The shikimate pathway enzymes DAHP synthase (CgDS, Cg2391) and chorismate mutase (CgCM, Cgl0853) play a key role in the biosynthesis of aromatic compounds. Here we show that CgCM requires the formation of a complex with CgDS to achieve full activity, and that both CgCM and CgDS are feedback regulated by aromatic amino acids binding to CgDS. Kinetic analysis showed that Phe and Tyr inhibit CgCM activity by inter-enzyme allostery, whereas binding of Trp to CgDS strongly activates CgCM. Mechanistic insights were gained from crystal structures of the CgCM homodimer, tetrameric CgDS, and the heterooctameric CgCM-CgDS complex, refined to 1.1, 2.5, and 2.2 Å resolution, respectively. Structural details from the allosteric binding sites reveal that DAHP synthase is recruited as the dominant regulatory platform to control the shikimate pathway, similar to the corresponding enzyme complex from Mycobacterium tuberculosis.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Corismato Mutasa/metabolismo , Corynebacterium glutamicum/enzimología , Triptófano/metabolismo , Regulación Alostérica , Aminoácidos Aromáticos/metabolismo , Corismato Mutasa/química , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Fenilalanina/metabolismo , Conformación Proteica , Multimerización de Proteína , Ácido Shikímico/metabolismo , Tirosina/metabolismo
5.
J Mol Biol ; 428(6): 1237-1255, 2016 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-26776476

RESUMEN

DAHP synthase and chorismate mutase catalyze key steps in the shikimate biosynthetic pathway en route to aromatic amino acids. In Mycobacterium tuberculosis, chorismate mutase (MtCM; Rv0948c), located at the branch point toward phenylalanine and tyrosine, has poor activity on its own. However, it is efficiently activated by the first enzyme of the pathway, DAHP synthase (MtDS; Rv2178c), through formation of a non-covalent MtCM-MtDS complex. Here, we show how MtDS serves as an allosteric platform for feedback regulation of both enzymes, using X-ray crystallography, small-angle X-ray scattering, size-exclusion chromatography, and multi-angle light scattering. Crystal structures of the fully inhibited MtDS and the allosterically down-regulated MtCM-MtDS complex, solved at 2.8 and 2.7Å, respectively, reveal how effector binding at the internal MtDS subunit interfaces regulates the activity of MtDS and MtCM. While binding of all three metabolic end products to MtDS shuts down the entire pathway, the binding of phenylalanine jointly with tyrosine releases MtCM from the MtCM-MtDS complex, hence suppressing MtCM activation by 'inter-enzyme allostery'. This elegant regulatory principle, invoking a transient allosteric enzyme interaction, seems to be driven by dynamics and is likely a general strategy used by nature.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/química , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Regulación Alostérica , Corismato Mutasa/química , Corismato Mutasa/metabolismo , Mycobacterium tuberculosis/enzimología , Ácido Shikímico/metabolismo , Cromatografía en Gel , Cristalografía por Rayos X , Dispersión Dinámica de Luz , Redes y Vías Metabólicas , Unión Proteica , Dispersión del Ángulo Pequeño
6.
PLoS One ; 9(12): e116234, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25551646

RESUMEN

The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.


Asunto(s)
Corismato Mutasa/metabolismo , Evolución Molecular Dirigida/métodos , Mycobacterium tuberculosis/metabolismo , Mapeo de Interacción de Proteínas/métodos , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Calibración , Corismato Mutasa/genética , Biblioteca de Genes , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Distribución Aleatoria
7.
Chem Biodivers ; 9(11): 2507-27, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23161632

RESUMEN

Tuberculosis (TB) is a devastating disease that claims millions of lives every year. Hindered access or non-compliance to medication, especially in developing countries, led to drug resistance, further aggravating the situation. With current standard therapies in use for over 50 years and only few new candidates in clinical trials, there is an urgent call for new TB drugs. A powerful tool for the development of new medication is structure-guided design, combined with virtual screening or docking studies. Here, we report the results of a drug-design project, which we based on a publication that claimed the structure-guided discovery of several promising and highly active inhibitors targeting the secreted chorismate mutase (*MtCM) from Mycobacterium tuberculosis. We set out to further improve on these compounds and synthesized a series of new derivatives. Thorough evaluation of these molecules in enzymatic assays revealed, to our dismay, that neither the claimed lead compounds, nor any of the synthesized derivatives, show any inhibitory effects against *MtCM.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Corismato Mutasa/antagonistas & inhibidores , Diseño de Fármacos , Mycobacterium tuberculosis/enzimología , Corismato Mutasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
8.
J Health Psychol ; 17(3): 379-88, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21859800

RESUMEN

Connectedness with nature (CN) is seen as a personal disposition relevant for environmental as well as human health. In five questionnaire studies (N = 547) we systematically investigated the relationship between various operationalizations of well-being and CN. CN was assessed with two different tools in parallel. All significant correlations were controlled for the effects of age and gender. Psychological well-being, meaningfulness and vitality were found to be robustly correlated with CN. We highlight the relevance of CN with respect to human health and further discuss conceptual differences unraveled by the concurrent application of two CN-tools.


Asunto(s)
Felicidad , Salud Mental , Naturaleza , Adaptación Psicológica , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Austria , Ambiente , Femenino , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida , Factores Sexuales , Encuestas y Cuestionarios , Adulto Joven
9.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 10): 1048-52, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19851019

RESUMEN

Chorismate mutase catalyzes a key step in the shikimate-biosynthetic pathway and hence is an essential enzyme in bacteria, plants and fungi. Mycobacterium tuberculosis contains two chorismate mutases, a secreted and an intracellular one, the latter of which (MtCM; Rv0948c; 90 amino-acid residues; 10 kDa) is the subject of this work. Here are reported the gene expression, purification and crystallization of MtCM alone and of its complex with another shikimate-pathway enzyme, DAHP synthase (MtDS; Rv2178c; 472 amino-acid residues; 52 kDa), which has been shown to enhance the catalytic efficiency of MtCM. The MtCM-MtDS complex represents the first noncovalent enzyme complex from the common shikimate pathway to be structurally characterized. Soaking experiments with a transition-state analogue are also reported. The crystals of MtCM and the MtCM-MtDS complex diffracted to 1.6 and 2.1 A resolution, respectively.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/química , Corismato Mutasa/química , Mycobacterium tuberculosis/enzimología , Cristalización , Cristalografía por Rayos X , Complejos Multienzimáticos/química
10.
EMBO J ; 28(14): 2128-42, 2009 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-19556970

RESUMEN

Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of Mycobacterium tuberculosis (MtCM; Rv0948c) has poor activity and lacks prominent active-site residues. However, its catalytic efficiency increases >100-fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate-pathway enzyme. The 2.35 A crystal structure of the MtCM-MtDS complex bound to a transition-state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active-site residues on binding to MtDS. The mutagenesis of the C-terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate-mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of M. tuberculosis with an important regulatory feature. Experimental evidence suggests that such non-covalent enzyme complexes comprising an AroQ(delta) subclass chorismate mutase like MtCM are abundant in the bacterial order Actinomycetales.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/química , Corismato Mutasa/química , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimología , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Corismato Mutasa/genética , Corismato Mutasa/metabolismo , Clonación Molecular , Corynebacterium glutamicum/enzimología , Cristalografía por Rayos X , Activación Enzimática , Malatos/química , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium tuberculosis/metabolismo , Fenilalanina/metabolismo , Alineación de Secuencia , Ácido Shikímico/metabolismo , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA