Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Anal Chem ; 96(16): 6311-6320, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38594017

RESUMEN

Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.


Asunto(s)
Glicoesfingolípidos , Hígado , Schistosoma mansoni , Esquistosomiasis mansoni , Animales , Glicoesfingolípidos/metabolismo , Glicoesfingolípidos/química , Hígado/metabolismo , Hígado/parasitología , Cricetinae , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Mesocricetus , Cromatografía Liquida , Masculino
2.
PNAS Nexus ; 3(4): pgae104, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562583

RESUMEN

Schistosomiasis, a widespread neglected tropical disease, presents a complex and multifaceted clinical-pathological profile. Using hamsters as final hosts, we dissected molecular events following Schistosoma mansoni infection in the liver-the organ most severely affected in schistosomiasis patients. Employing tandem mass tag-based proteomics, we studied alterations in the liver proteins in response to various infection modes and genders. We examined livers from female and male hamsters that were: noninfected (control), infected with either unisexual S. mansoni cercariae (single-sex) or both sexes (bisex). The infection induced up-regulation of proteins associated with immune response, cytoskeletal reorganization, and apoptotic signaling. Notably, S. mansoni egg deposition led to the down-regulation of liver factors linked to energy supply and metabolic processes. Gender-specific responses were observed, with male hamsters showing higher susceptibility, supported by more differentially expressed proteins than found in females. Of note, metallothionein-2 and S100a6 proteins exhibited substantial up-regulation in livers of both genders, suggesting their pivotal roles in the liver's injury response. Immunohistochemistry and real-time-qPCR confirmed strong up-regulation of metallothionein-2 expression in the cytoplasm and nucleus upon the infection. Similar findings were seen for S100a6, which localized around granulomas and portal tracts. We also observed perturbations in metabolic pathways, including down-regulation of enzymes involved in xenobiotic biotransformation, cellular energy metabolism, and lipid modulation. Furthermore, lipidomic analyses through liquid chromatography-tandem mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging identified extensive alterations, notably in cardiolipin and triacylglycerols, suggesting specific roles of lipids during pathogenesis. These findings provide unprecedented insights into the hepatic response to S. mansoni infection, shedding light on the complexity of liver pathology in this disease.

3.
Cell Mol Gastroenterol Hepatol ; 17(1): 107-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37696392

RESUMEN

BACKGROUND & AIMS: Schistosomiasis is one of the most prominent parasite-induced infectious diseases, affecting more than 250 million people. Schistosoma mansoni causes metabolic exhaustion and a strong redox imbalance in the liver, causing parenchymal damage, and may predispose for cancer. We investigated whether oxidative stress provokes hepatocellular proliferation upon S. mansoni infection. METHODS: The cell cycle, replication stress response, and proliferation were analyzed on transcriptional and protein levels in the livers of S. mansoni-infected hamsters and by mechanistic gain- and loss-of-function experiments in human hepatoma cells. Major results were validated in human biopsy specimens of S. mansoni-infected patients. RESULTS: S. mansoni infection induced licensing factors of DNA replication and cell-cycle checkpoint cyclins in parallel with a DNA damage response in hamster hepatocytes. Moreover, even unisexual infection without egg effects, as a reflection of a chronic inflammatory process, resulted in a moderate activation of several cell-cycle markers. S. mansoni soluble egg antigens induced proliferation of human hepatoma cells that could be abolished by reduced glutathione. CONCLUSIONS: Our data suggest that hepatocellular proliferation is triggered by S. mansoni egg-induced oxidative stress.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Esquistosomiasis mansoni , Cricetinae , Animales , Humanos , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/metabolismo , Estrés Oxidativo , Proliferación Celular
4.
Sci Rep ; 13(1): 20390, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990129

RESUMEN

Schistosomiasis is a parasitic disease affecting more than 250 million people worldwide. The transcription factor c-Jun, which is induced in S. mansoni infection-associated liver disease, can promote hepatocyte survival but can also trigger hepatocellular carcinogenesis. We aimed to analyze the hepatic role of c-Jun following S. mansoni infection. We adopted a hepatocyte-specific c-Jun knockout mouse model (Alb-Cre/c-Jun loxP) and analyzed liver tissue and serum samples by quantitative real-time PCR array, western blotting, immunohistochemistry, hydroxyproline quantification, and functional analyses. Hepatocyte-specific c-Jun knockout (c-JunΔli) was confirmed by immunohistochemistry and western blotting. Infection with S. mansoni induced elevated aminotransferase-serum levels in c-JunΔli mice. Of note, hepatic Cyclin D1 expression was induced in infected c-Junf/f control mice but to a lower extent in c-JunΔli mice. S. mansoni soluble egg antigen-induced proliferation in a human hepatoma cell line was diminished by inhibition of c-Jun signaling. Markers for apoptosis, oxidative stress, ER stress, inflammation, autophagy, DNA-damage, and fibrosis were not altered in S. mansoni infected c-JunΔli mice compared to infected c-Junf/f controls. Enhanced liver damage in c-JunΔli mice suggested a protective role of c-Jun. A reduced Cyclin D1 expression and reduced hepatic regeneration could be the reason. In addition, it seems likely that the trends in pathological changes in c-JunΔli mice cumulatively led to a loss of the protective potential being responsible for the increased hepatocyte damage and loss of regenerative ability.


Asunto(s)
Schistosoma mansoni , Esquistosomiasis mansoni , Humanos , Ratones , Animales , Ciclina D1/metabolismo , Esquistosomiasis mansoni/parasitología , Hígado/metabolismo , Hepatocitos/metabolismo , Proliferación Celular
5.
Viruses ; 15(4)2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-37112819

RESUMEN

Chronic hepatitis B virus (HBV) infection is a global health threat. Mutations in the surface antigen of HBV (HBsAg) may alter its antigenicity, infectivity, and transmissibility. A patient positive for HBV DNA and detectable but low-level HBsAg in parallel with anti-HBs suggested the presence of immune and/or diagnostic escape variants. To support this hypothesis, serum-derived HBs gene sequences were amplified and cloned for sequencing, which revealed infection with exclusively non-wildtype HBV subgenotype (sgt) D3. Three distinct mutations in the antigenic loop of HBsAg that caused additional N-glycosylation were found in the variant sequences, including a previously undescribed six-nucleotide insertion. Cellular and secreted HBsAg was analyzed for N-glycosylation in Western blot after expression in human hepatoma cells. Secreted HBsAg was also subjected to four widely used, state-of-the-art diagnostic assays, which all failed to detect the hyperglycosylated insertion variant. Additionally, the recognition of mutant HBsAg by vaccine- and natural infection-induced anti-HBs antibodies was severely impaired. Taken together, these data suggest that the novel six-nucleotide insertion as well as two other previously described mutations causing hyperglycosylation in combination with immune escape mutations have a critical impact on in vitro diagnostics and likely increase the risk of breakthrough infection by evasion of vaccine-induced immunity.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Humanos , Virus de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/genética , Anticuerpos contra la Hepatitis B , Vacunas contra Hepatitis B , Mutación , Factores Inmunológicos , Nucleótidos , Proteínas de la Membrana/genética
6.
JHEP Rep ; 5(2): 100625, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36590323

RESUMEN

Background & Aims: Schistosomiasis is a parasitic infection which affects more than 200 million people globally. Schistosome eggs, but not the adult worms, are mainly responsible for schistosomiasis-specific morbidity in the liver. It is unclear if S. mansoni eggs consume host metabolites, and how this compromises the host parenchyma. Methods: Metabolic reprogramming was analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging, liquid chromatography with high-resolution mass spectrometry, metabolite quantification, confocal laser scanning microscopy, live cell imaging, quantitative real-time PCR, western blotting, assessment of DNA damage, and immunohistology in hamster models and functional experiments in human cell lines. Major results were validated in human biopsies. Results: The infection with S. mansoni provokes hepatic exhaustion of neutral lipids and glycogen. Furthermore, the distribution of distinct lipid species and the regulation of rate-limiting metabolic enzymes is disrupted in the liver of S. mansoni infected animals. Notably, eggs mobilize, incorporate, and store host lipids, while the associated metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes. Administration of reactive oxygen species scavengers ameliorates these deleterious effects. Conclusions: Our findings indicate that S. mansoni eggs completely reprogram lipid and carbohydrate metabolism via soluble factors, which results in oxidative stress-induced cell damage in the host parenchyma. Impact and implications: The authors demonstrate that soluble egg products of the parasite S. mansoni induce hepatocellular reprogramming, causing metabolic exhaustion and a strong redox imbalance. Notably, eggs mobilize, incorporate, and store host lipids, while the metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes, independent of the host's immune response. S. mansoni eggs take advantage of the host environment through metabolic reprogramming of hepatocytes and enterocytes. By inducing DNA damage, this neglected tropical disease might promote hepatocellular damage and thus influence international health efforts.

7.
Biomedicines ; 12(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38255140

RESUMEN

The pleiotropic chemokine chemerin is involved in multiple processes in metabolism and inflammation. The present study aimed to elucidate its regulation in morbid obesity and during therapy-induced rapid weight loss. A total of 128 severely obese patients were enrolled, and their basal anthropometric and clinical parameters were assessed. In total, 64 individuals attended a conservative 12-month weight loss program that included a low calorie-formula diet (LCD), and 64 patients underwent bariatric surgery (Roux-en-Y gastric bypass, RYGB). Blood serum was obtained at study baseline and at follow-up visits after 3, 6, and 12 months. Systemic chemerin concentrations, as well as metabolic and immunological parameters, were quantified. During the 12-month period studied, serum chemerin levels decreased significantly with weight loss after bariatric surgery, as well as with conservative low calorie therapy; however, the effects of RYGB were generally stronger. No substantial associations of systemic chemerin concentrations with therapy-induced improvement of type 2 diabetes and with indicators of liver function and fibrosis were observed. We conclude that systemic chemerin levels decrease in obese individuals during weight loss, regardless of the therapeutic strategy. A potential involvement in weight loss-associated improvement of metabolic disorders and liver fibrosis remains to be further investigated.

8.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430499

RESUMEN

Allocation of morbidly obese patients to either conservative therapy options-such as lifestyle intervention and/or low-calorie diet (LCD)-or to bariatric surgery-preferably sleeve gastrectomy or Roux-en-Y gastric bypass (RYGB)-represents a crucial decision in order to obtain sustainable metabolic improvement and weight loss. The present study encompasses 160 severely obese patients, 81 of whom participated in an LCD program, whereas 79 underwent RYGB surgery. The post-interventional dynamics of physiologically relevant adipokines and hepatokines (ANGPTL4, CCL5, GDF15, GPNMB, IGFBP6), as well as their correlation with fat mass reduction and improvement of liver fibrosis, were analyzed. Systemic GDF15 was characterized as an excellent predictive marker for hepatic fibrosis as well as type 2 diabetes mellitus. Of note, baseline GDF15 serum concentrations were positively correlated with NFS and HbA1c levels after correction for BMI, suggesting GDF15 as a BMI-independent marker of hepatic fibrosis and T2D in obese individuals. Specific GDF15 cut-off values for both diseases were calculated. Overall, the present data demonstrate that circulating levels of specific adipokines and hepatokines are regulated with therapy-induced fat loss and metabolic improvement and might, therefore, serve as biomarkers for the success of obesity therapy strategies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Derivación Gástrica , Obesidad Mórbida , Humanos , Obesidad Mórbida/diagnóstico , Obesidad Mórbida/cirugía , Adipoquinas , Diabetes Mellitus Tipo 2/etiología , Biomarcadores , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/terapia , Cirrosis Hepática/etiología , Glicoproteínas de Membrana
9.
Biomedicines ; 10(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36140299

RESUMEN

Primary hepatocytes are a major tool in biomedical research. However, obtaining high yields of variable hepatocytes is technically challenging. Most protocols rely on the two-step collagenase perfusion protocol introduced by Per Ottar Seglen in 1976. In this procedure, the liver is perfused in situ with a recirculating, constant volume of calcium-free buffer, which is maintained at 37 °C and continuously oxygenated. In a second step, the liver is removed from the carcass and perfused with a collagenase solution in order to dissociate the extracellular matrix of the liver and liberate individual cells. Finally, the dissected hepatocytes are further purified and concentrated by density-based centrifugation. However, failure in proper cannulation, incomplete enzymatic digestion or over-digestion can result in low cell yield and viability. Here we present a novel semi-automated perfusion device, which allows gentle, rapid and efficient generation of a single-cell suspension from rodent livers. In combination with prefabricated buffers, the system allows reliable and highly reproducible isolation of primary hepatocytes.

10.
Cells ; 11(11)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35681524

RESUMEN

Mesenchymal stromal cells (MSC) increasingly emerge as an option to ameliorate non-alcoholic steatohepatitis (NASH), a serious disease, which untreated may progress to liver cirrhosis and cancer. Before clinical translation, the mode of action of MSC needs to be established. Here, we established NASH in an immune-deficient mouse model by feeding a high fat diet. Human bone-marrow-derived MSC were delivered to the liver via intrasplenic transplantation. As verified by biochemical and image analyses, human mesenchymal stromal cells improved high-fat-diet-induced NASH in the mouse liver by decreasing hepatic lipid content and inflammation, as well as by restoring tissue homeostasis. MSC-mediated changes in gene expression indicated the switch from lipid storage to lipid utilization. It was obvious that host mouse hepatocytes harbored human mitochondria. Thus, it is feasible that resolution of NASH in mouse livers involved the donation of human mitochondria to the mouse hepatocytes. Therefore, human MSC might provide oxidative capacity for lipid breakdown followed by restoration of metabolic and tissue homeostasis.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Lípidos , Células Madre Mesenquimatosas/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
11.
Cells ; 11(9)2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563813

RESUMEN

The murine cell line GRX has been introduced as an experimental tool to study aspects of hepatic stellate cell biology. It was established from livers of C3H/HeN mice that were infected with cercariae of Schistosoma mansoni. Although these cells display a myofibroblast phenotype, they can accumulate intracellular lipids and acquire a fat-storing lipocyte phenotype when treated with retinol, insulin, and indomethacin. We have performed genetic characterization of GRX and established a multi-loci short tandem repeat (STR) signature for this cell line that includes 18 mouse STR markers. Karyotyping further revealed that this cell line has a complex genotype with various chromosomal aberrations. Transmission electron microscopy revealed that GRX cells produce large quantities of viral particles belonging to the gammaretroviral genus of the Retroviridae family as assessed by next generation mRNA sequencing and Western blot analysis. Rolling-circle-enhanced-enzyme-activity detection (REEAD) revealed the absence of retroviral integrase activity in cell culture supernatants, most likely as a result of tetherin-mediated trapping of viral particles at the cell surface. Furthermore, staining against schistosome gut-associated circulating anodic antigens and cercarial O- and GSL-glycans showed that the cell line lacks S. mansoni-specific glycostructures. Our findings will now help to fulfill the recommendations for cellular authentications required by many granting agencies and scientific journals when working with GRX cells. Moreover, the definition of a characteristic STR profile will increase the value of GRX cells in research and provides an important benchmark to identify intra-laboratory cell line heterogeneity, discriminate between different mouse cell lines, and to avoid misinterpretation of experimental findings by usage of misidentified or cross-contaminated cells.


Asunto(s)
Células Estrelladas Hepáticas , Macrófagos del Hígado , Animales , Células Estrelladas Hepáticas/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C3H , Vitamina A/metabolismo
12.
J Clin Med ; 11(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35407364

RESUMEN

Obesity and type 2 diabetes mellitus (T2D) represent important comorbidities of the metabolic syndrome, which are associated with non-alcoholic fatty liver disease (NAFLD)-related hepatic fibrosis. In total, 160 morbidly obese patients-81 following a low-calorie formula diet (LCD) program and 79 undergoing bariatric surgery (Roux-en-Y gastric bypass, RYGB)-were examined for anthropometric and metabolic parameters at base-line and during 12 months of weight loss, focusing on a putative co-regulation of T2D parameters and liver fibrosis risk. High NAFLD fibrosis scores (NFS) before intervention were associated with elevated HbA1c levels and T2D. Loss of weight and body fat percentage (BFL) were associated with improved glucose and lipid metabolism and reduced risk of NAFLD-related fibrosis, with particularly beneficial effects by RYGB. Both T2D improvement and NFS decrease were positively associated with high BFL. A highly significant correlation of NFS reduction with BFL was restricted to male patients while being absent in females, accompanied by generally higher BFL in men. Overall, the data display the relation of BFL, T2D improvement, and reduced NAFLD-related fibrosis risk during weight loss in morbidly obese individuals induced by diet or RYGB. Furthermore, our data suggest a considerable sexual dimorphism concerning the correlation of fat loss and improved risk of liver fibrosis.

13.
Anal Bioanal Chem ; 414(12): 3653-3665, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35320368

RESUMEN

Schistosomiasis, caused by the human parasite Schistosoma mansoni, is one of the WHO-listed neglected tropical diseases (NTDs), and it has severe impact on morbidity and mortality, especially in Africa. Not only the adult worms but also their eggs are responsible for health problems. Up to 50% of the eggs produced by the female worms are not excreted with the feces but are trapped in the host tissue, such as the liver, where they provoke immune responses and a change in the lipid profile. We built up a database with 372 infection markers found in livers of S. mansoni-infected hamsters, using LC-MS/MS for identification, followed by statistical analysis. Most of them belong to the lipid classes of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and triglycerides (TGs). We assigned some of these markers to specific anatomical structures by applying high-resolution MALDI MSI to cryosections of hamster liver and generating ion images based on the marker list from the LC-MS/MS experiments. Furthermore, enrichment and depletion of several markers were visualized.


Asunto(s)
Esquistosomiasis mansoni , Animales , Cromatografía Liquida , Cricetinae , Femenino , Lípidos , Hígado , Schistosoma mansoni , Esquistosomiasis mansoni/parasitología , Espectrometría de Masas en Tándem
14.
Cell Mol Gastroenterol Hepatol ; 13(4): 1041-1055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34954190

RESUMEN

BACKGROUND & AIMS: The endocannabinoid system is involved in the modulation of inflammatory, fibrotic, metabolic, and carcinogenesis-associated signaling pathways via cannabinoid receptor (CB)1 and CB2. We hypothesized that the pharmacologic antagonization of CB1 receptor improves cholestasis in Abcb4-/- mice. METHODS: After weaning, male Abcb4-/- mice were treated orally with rimonabant (a specific antagonist of CB1) or ACEA (an agonist of CB1) until up to 16 weeks of age. Liver tissue and serum were isolated and examined by means of serum analysis, quantitative real time polymerase chain reaction, Western blot, immunohistochemistry, and enzyme function. Untreated Abcb4-/- and Bagg Albino Mouse/c wild-type mice served as controls. RESULTS: Cholestasis-induced symptoms such as liver damage, bile duct proliferation, and enhanced circulating bile acids were improved by CB1 antagonization. Rimonabant treatment also improved Phosphoenolpyruvat-Carboxykinase expression and reduced inflammation and the acute-phase response. The carcinogenesis-associated cellular-Jun N-terminal kinase/cellular-JUN and signal transducer and activator of transcription 3 signaling pathways activated in Abcb4-/- mice were reduced to wild-type level by CB1 antagonization. CONCLUSIONS: We showed a protective effect of oral CB1 antagonization in chronic cholestasis using the established Abcb4-/- model. Our results suggest that pharmacologic antagonization of the CB1 receptor could have a therapeutic benefit in cholestasis-associated metabolic changes, liver damage, inflammation, and carcinogenesis.


Asunto(s)
Colestasis , Receptor Cannabinoide CB1 , Animales , Carcinogénesis , Colestasis/tratamiento farmacológico , Inflamación , Masculino , Ratones , Rimonabant/farmacología
15.
Sci Rep ; 11(1): 17001, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417537

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage loss and reduced joint function. OA risk factors are age and obesity. Many adipokines are altered by obesity but also OA although systemic adipokine regulation in OA is not always clear. Therefore, metabolic effects of diet-induced obesity on OA development as well as the influence of obesity and OA progression on systemic vs. local adipokine expression in joints were compared. C57Bl/6-mice fed with HFD (high fat diet) or normal diet prior to destabilization of the medial meniscus (DMM) were sacrificed 4/6/8 weeks after surgery. Sera were evaluated for adiponectin, leptin, visfatin, cytokines. Liver grading and staging for non-alcoholic steatohepatitis (NASH) was performed and crown-like structures (CLS) in adipose tissue measured. OA progression was scored histologically. Adipokine-expressing cells and types were evaluated by immunohistochemistry. Time-dependent changes in DMM-progression were reflected by increased systemic adiponectin levels in DMM especially combined with HFD. While HFD increased serum leptin, DMM reduced systemic leptin significantly. OA scores correlated with bodyweight, leptin and hepatic scoring. Locally, increased numbers of adiponectin- and leptin-producing fibroblasts were observed in damaged menisci but visfatin was not changed. Local adipokine expression was independent from systemic levels, suggesting different mechanisms of action.


Asunto(s)
Adipoquinas/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/metabolismo , Adipoquinas/biosíntesis , Adipoquinas/sangre , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Masculino , Meniscos Tibiales/patología , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Osteoartritis de la Rodilla/sangre
16.
Cells ; 10(8)2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34440754

RESUMEN

Schistosomiasis is one of the most prominent parasite-induced infectious diseases, causing tremendous medical and socioeconomic problems. Current studies have reported on the spread of endemic regions and the fear of development of resistance against praziquantel, the only effective drug available. Among the Schistosoma species, only S. haematobium is classified as a Group 1 carcinogen (definitely cancerogenic to humans), causing squamous cell carcinoma of the bladder, whereas infection with S. mansoni is included in Group 3 of carcinogenic hazards to humans by the International Agency for Research on Cancer (IARC), indicating insufficient evidence to determine its carcinogenicity. Nevertheless, although S. mansoni has not been discussed as an organic carcinogen, the multiplicity of case reports, together with recent data from animal models and cell culture experiments, suggests that this parasite can predispose patients to or promote hepatic and colorectal cancer. In this review, we discuss the current data, with a focus on new developments regarding the association of S. mansoni infection with human cancer and the recently discovered biomolecular mechanisms by which S. mansoni may predispose patients to cancer development and carcinogenesis.


Asunto(s)
Carcinogénesis , Schistosoma mansoni/patogenicidad , Esquistosomiasis/patología , Animales , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/etiología , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/etiología , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/etiología , Esquistosomiasis/complicaciones , Células Th2/inmunología , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/etiología
17.
J Clin Med ; 10(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809676

RESUMEN

Bariatric surgery has emerged as an effective treatment option in morbidly obese patients with non-alcoholic fatty liver disease (NAFLD). However, worsening or new onset of non-alcoholic steatohepatitis (NASH) and fibrosis have been observed. Caspase-cleaved keratin 18 (ccK18) has been established as a marker of hepatocyte apoptosis, a key event in NASH development. Thus, ccK18 measurements might be feasible to monitor bariatric surgery patients. Clinical data and laboratory parameters were collected from 39 patients undergoing laparoscopic Roux-en-Y gastric bypass at six timepoints, prior to surgery until one year after the procedure. ccK18 levels were measured and a high-throughput analysis of serum adipokines and cytokines was carried out. Half of the cohort's patients (20/39) presented with ccK18 levels indicative of progressed liver disease. 21% had a NAFLD-fibrosis score greater than 0.676, suggesting significant fibrosis. One year after surgery, a mean weight loss of 36.87% was achieved. Six and twelve months after surgery, ccK18 fragments were significantly reduced compared to preoperative levels (p < 0.001). Yet nine patients did not show a decline in ccK18 levels ≥ 10% within one year postoperatively, which was considered a response to treatment. While no significant differences in laboratory parameters or ccK18 could be observed, they presented with a greater expression of leptin and fibrinogen before surgery. Consecutive ccK18 measurements monitored the resolution of NAFLD and identified non-responders to bariatric surgery with ongoing liver injury. Further studies are needed to elicit the pathological mechanisms in non-responders and study the potential of adipokines as prognostic markers.

18.
Cell Mol Gastroenterol Hepatol ; 12(2): 383-394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33766783

RESUMEN

BACKGROUND AND AIMS: A histopathological hallmark of chronic hepatitis B virus (HBV) infection is the presence of ground glass hepatocytes (GGHs). GGHs are liver cells that exhibit eosinophilic, granular, glassy cytoplasm in light microscopy and are characterized by accumulation of HBV surface (HBs) proteins in the endoplasmic reticulum (ER). More important, GGHs have been accepted as a precursor of HCC and may represent preneoplastic lesions of the liver. METHODS: Here we show that the reason for ground glass phenotype of hepatocytes in patients with chronic hepatitis B (CHB) and in HBs transgenic mice is a complex formation between HBs proteins and lipid droplets (LDs) within the ER. RESULTS: As fat is a main component of LDs their presence reduces the protein density of HBs aggregates. Therefore, they adsorb less amount of eosin during hematoxylin-eosin staining and appear dull in light microscopy. However, after induction of interferon response in the liver LDs were not only co-localized with HBs but also distributed throughout the cytoplasm of hepatocytes. The uniform distribution of LDs weakens the contrast between HBs aggregates and the rest of the cytoplasm and complicates the identification of GGHs. Suppression of interferon response restored the ground glass phenotype of hepatocytes. CONCLUSIONS: Complex formation between HBs and LDs represents a very important feature of CHB that could affect LDs functions in hepatocytes. The strain specific activation of the interferon response in the liver of HBs/c mice prevented the development of GGHs. Thus, manipulation of LDs could provide a new treatment strategy in the prevention of liver cancer.


Asunto(s)
Hepatocitos/metabolismo , Interferones/metabolismo , Metabolismo de los Lípidos , Animales , Retículo Endoplásmico/metabolismo , Humanos , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Fenotipo
19.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562308

RESUMEN

CTRP-3 (C1q/TNF-related protein-3) is an adipokine with endocrine and immunological function. The impact of adipocyte CTRP-3 production on systemic CTRP-3 concentrations and on adipocyte biology is unknown. A murine model of adipocyte CTRP-3 knockout (KO) was established (via the Cre/loxP system). Serum adipokine levels were quantified by ELISA and adipose tissue (AT) gene expression by real-time PCR. Preadipocytes were isolated from AT and differentiated into adipocytes. Comparative transcriptome analysis was applied in adipocytes and liver tissue. Body weight and AT mass were reduced in CTRP-3 KO mice together with decreased serum leptin. In primary cells from visceral AT of KO mice, expression of adiponectin, progranulin, and resistin was induced, while peroxisome proliferator activated receptor γ (PPARγ) was decreased. M1/M2 macrophage polarization markers were shifted to a more anti-inflammatory phenotype. CTRP-3 expression in AT did not contribute to serum concentrations. AT and liver morphology remained unaffected by CTRP-3 KO. Myelin transcription factor 1-like (Myt1l) was identified as a highly upregulated gene. In conclusion, adipocyte CTRP-3 has a role in adipogenesis and AT weight gain whereas adipocyte differentiation is not impaired by CTRP-3 deficiency. Since no effects on circulating CTRP-3 levels were observed, the impact of adipocyte CTRP-3 KO is limited to adipose tissue. Modified AT gene expression indicates a rather anti-inflammatory phenotype.


Asunto(s)
Adipocitos/citología , Adipogénesis , Adipoquinas/metabolismo , Tejido Adiposo Blanco/citología , Regulación de la Expresión Génica , Adipocitos/metabolismo , Adipoquinas/genética , Adipoquinas/fisiología , Tejido Adiposo Blanco/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transcriptoma
20.
Sci Rep ; 10(1): 22373, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33361772

RESUMEN

Schistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia, in sub-Saharan Africa, and particularly also in Europe. The WHO describes an increasing global health burden with more than 290 million people threatened by the disease and a potential to spread into regions with temperate climates like Corsica, France. The aim of our study was to investigate the influence of S. mansoni infection on colorectal carcinogenic signaling pathways in vivo and in vitro. S. mansoni infection, soluble egg antigens (SEA) and the Interleukin-4-inducing principle from S. mansoni eggs induce Wnt/ß-catenin signaling and the protooncogene c-Jun as well as downstream factor Cyclin D1 and markers for DNA-damage, such as Parp1 and γH2a.x in enterocytes. The presence of these characteristic hallmarks of colorectal carcinogenesis was confirmed in colon biopsies from S. mansoni-infected patients demonstrating the clinical relevance of our findings. For the first time it was shown that S. mansoni SEA may be involved in the induction of colorectal carcinoma-associated signaling pathways.


Asunto(s)
Antígenos Helmínticos/inmunología , Colon , Huevos , Proteínas Proto-Oncogénicas c-jun/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Vía de Señalización Wnt/inmunología , Animales , Colon/inmunología , Colon/parasitología , Cricetinae , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...