Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39149351

RESUMEN

Objective: Dysregulated glucagon secretion and inadequate functional beta cell mass are hallmark features of diabetes. While glucagon receptor (GCGR) antagonism ameliorates hyperglycemia and elicits beta cell regeneration in pre-clinical models of diabetes, it also promotes alpha and delta cell hyperplasia. We sought to investigate the mechanism by which loss of glucagon action impacts pancreatic islet non-alpha cells, and the relevance of these observations in a human islet context. Methods: We used zebrafish, rodents, and transplanted human islets comprising six different models of interrupted glucagon signaling to examine their impact on delta and beta cell proliferation and mass. We also used models with global deficiency of the cationic amino acid transporter, SLC7A2, and mTORC1 inhibition via rapamycin, to determine whether amino acid-dependent nutrient sensing was required for islet non-alpha cell growth. Results: Inhibition of glucagon signaling stimulated delta cell proliferation in mouse and transplanted human islets, and in mouse islets. This was rapamycin-sensitive and required SLC7A2. Likewise, gcgr deficiency augmented beta cell proliferation via SLC7A2- and mTORC1-dependent mechanisms in zebrafish and promoted cell cycle engagement in rodent beta cells but was insufficient to drive a significant increase in beta cell mass in mice. Conclusion: Our findings demonstrate that interruption of glucagon signaling augments islet non-alpha cell proliferation in zebrafish, rodents, and transplanted human islets in a manner requiring SLC7A2 and mTORC1 activation. An increase in delta cell mass may be leveraged for future beta cell regeneration therapies relying upon delta cell reprogramming.

2.
Ultrasound Med Biol ; 39(7): 1277-91, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23643050

RESUMEN

The stabilizing encapsulation of a microbubble-based ultrasound contrast agent (UCA) critically affects its acoustic properties. Polymers, which behave differently from materials commonly used (i.e., lipids or proteins) for monolayer encapsulation, have the potential for better stability and improved control of encapsulation properties. Air-filled microbubbles coated with poly(DL-lactic acid) (PLA) are characterized here using in vitro acoustic experiments and several models of encapsulation. The interfacial rheological properties of the encapsulation are determined according to each model using attenuation of ultrasound through a suspension of microbubbles. Then the model predictions are compared with scattered non-linear (sub- and second harmonic) responses. For this microbubble population (average diameter, 1.9 µm), the peak in attenuation measurement indicates a weighted-average resonance frequency of 2.5-3 MHz, which, in contrast to other encapsulated microbubbles, is lower than the resonance frequency of a free bubble of similar size (diameter, 1.9 µm). This apparently contradictory result stems from the extremely low surface dilational elasticity (around 0.01-0.07 N/m) and the reduced surface tension of the poly(DL-lactic acid) encapsulation, as well as the polydispersity of the bubble population. All models considered here are shown to behave similarly even in the non-linear regime because of the low surface dilational elasticity value. Pressure-dependent scattering measurements at two different excitation frequencies (2.25 and 3 MHz) revealed strongly non-linear behavior with 25-30 dB and 5-20 dB enhancements in fundamental and second-harmonic responses, respectively, for a contrast agent concentration of 1.33 µg/mL in the suspension. Sub-harmonic responses are registered above a relatively low generation threshold of 100-150 kPa, with up to 20 dB enhancement beyond that pressure. Numerical predictions from all models show good agreement with the experimentally measured fundamental response, but not with the experimental second-harmonic response. The characteristic features of sub-harmonic responses and the steady response beyond the threshold are matched well by model predictions. However, prediction of the threshold value depends on estimated properties and size distribution. The variation in size distribution from sample to sample leads to variation in estimates of encapsulation properties: the lowest estimated value for surface dilational viscosity better predicts the sub-harmonic threshold.


Asunto(s)
Cápsulas/química , Medios de Contraste/química , Medios de Contraste/efectos de la radiación , Poliésteres/química , Poliésteres/efectos de la radiación , Ondas de Choque de Alta Energía , Ensayo de Materiales , Dispersión de Radiación , Propiedades de Superficie/efectos de la radiación , Viscosidad/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA