Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Methods Cell Biol ; 186: 213-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705600

RESUMEN

Advancements in multiplexed tissue imaging technologies are vital in shaping our understanding of tissue microenvironmental influences in disease contexts. These technologies now allow us to relate the phenotype of individual cells to their higher-order roles in tissue organization and function. Multiplexed Ion Beam Imaging (MIBI) is one of such technologies, which uses metal isotope-labeled antibodies and secondary ion mass spectrometry (SIMS) to image more than 40 protein markers simultaneously within a single tissue section. Here, we describe an optimized MIBI workflow for high-plex analysis of Formalin-Fixed Paraffin-Embedded (FFPE) tissues following antigen retrieval, metal isotope-conjugated antibody staining, imaging using the MIBI instrument, and subsequent data processing and analysis. While this workflow is focused on imaging human FFPE samples using the MIBI, this workflow can be easily extended to model systems, biological questions, and multiplexed imaging modalities.


Asunto(s)
Adhesión en Parafina , Humanos , Adhesión en Parafina/métodos , Espectrometría de Masa de Ion Secundario/métodos , Fijación del Tejido/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Formaldehído/química
2.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496566

RESUMEN

Classic Hodgkin Lymphoma (cHL) is a tumor composed of rare malignant Hodgkin and Reed-Sternberg (HRS) cells nested within a T-cell rich inflammatory immune infiltrate. cHL is associated with Epstein-Barr Virus (EBV) in 25% of cases. The specific contributions of EBV to the pathogenesis of cHL remain largely unknown, in part due to technical barriers in dissecting the tumor microenvironment (TME) in high detail. Herein, we applied multiplexed ion beam imaging (MIBI) spatial pro-teomics on 6 EBV-positive and 14 EBV-negative cHL samples. We identify key TME features that distinguish between EBV-positive and EBV-negative cHL, including the relative predominance of memory CD8 T cells and increased T-cell dysfunction as a function of spatial proximity to HRS cells. Building upon a larger multi-institutional cohort of 22 EBV-positive and 24 EBV-negative cHL samples, we orthogonally validated our findings through a spatial multi-omics approach, coupling whole transcriptome capture with antibody-defined cell types for tu-mor and T-cell populations within the cHL TME. We delineate contrasting transcriptomic immunological signatures between EBV-positive and EBV-negative cases that differently impact HRS cell proliferation, tumor-immune interactions, and mecha-nisms of T-cell dysregulation and dysfunction. Our multi-modal framework enabled a comprehensive dissection of EBV-linked reorganization and immune evasion within the cHL TME, and highlighted the need to elucidate the cellular and molecular fac-tors of virus-associated tumors, with potential for targeted therapeutic strategies.

3.
Res Sq ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38410424

RESUMEN

Spatial omics technologies are capable of deciphering detailed components of complex organs or tissue in cellular and subcellular resolution. A robust, interpretable, and unbiased representation method for spatial omics is necessary to illuminate novel investigations into biological functions, whereas a mathematical theory deficiency still exists. We present SpaGFT (Spatial Graph Fourier Transform), which provides a unique analytical feature representation of spatial omics data and elucidates molecular signatures linked to critical biological processes within tissues and cells. It outperformed existing tools in spatially variable gene prediction and gene expression imputation across human/mouse Visium data. Integrating SpaGFT representation into existing machine learning frameworks can enhance up to 40% accuracy of spatial domain identification, cell type annotation, cell-to-spot alignment, and subcellular hallmark inference. SpaGFT identified immunological regions for B cell maturation in human lymph node Visium data, characterized secondary follicle variations from in-house human tonsil CODEX data, and detected extremely rare subcellular organelles such as Cajal body and Set1/COMPASS. This new method lays the groundwork for a new theoretical model in explainable AI, advancing our understanding of tissue organization and function.

4.
JCO Precis Oncol ; 8: e2300439, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330262

RESUMEN

PURPOSE: Recent evidence has shown that higher tumor mutational burden strongly correlates with an increased risk of immune-related adverse events (irAEs). By using an integrated multiomics approach, we further studied the association between relevant tumor immune microenvironment (TIME) features and irAEs. METHODS: Leveraging the US Food and Drug Administration Adverse Event Reporting System, we extracted cases of suspected irAEs to calculate the reporting odds ratios (RORs) of irAEs for cancers treated with immune checkpoint inhibitors (ICIs). TIME features for 32 cancer types were calculated on the basis of the cancer genomic atlas cohorts and indirectly correlated with each cancer's ROR for irAEs. A separate ICI-treated cohort of non-small-cell lung cancer (NSCLC) was used to evaluate the correlation between tissue-based immune markers (CD8+, PD-1/L1+, FOXP3+, tumor-infiltrating lymphocytes [TILs]) and irAE occurrence. RESULTS: The analysis of 32 cancers and 33 TIME features demonstrated a significant association between irAE RORs and the median number of base insertions and deletions (INDEL), neoantigens (r = 0.72), single-nucleotide variant neoantigens (r = 0.67), and CD8+ T-cell fraction (r = 0.51). A bivariate model using the median number of INDEL neoantigens and CD8 T-cell fraction had the highest accuracy in predicting RORs (adjusted r2 = 0.52, P = .002). Immunoprofile assessment of 156 patients with NSCLC revealed a strong trend for higher baseline median CD8+ T cells within patients' tumors who experienced any grade irAEs. Using machine learning, an expanded ICI-treated NSCLC cohort (n = 378) further showed a treatment duration-independent association of an increased proportion of high TIL (>median) in patients with irAEs (59.7% v 44%, P = .005). This was confirmed by using the Fine-Gray competing risk approach, demonstrating higher baseline TIL density (>median) associated with a higher cumulative incidence of irAEs (P = .028). CONCLUSION: Our findings highlight a potential role for TIME features, specifically INDEL neoantigens and baseline-immune infiltration, in enabling optimal irAE risk stratification of patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Linfocitos T CD8-positivos/patología , Estudios Retrospectivos , Microambiente Tumoral
5.
Nat Commun ; 15(1): 28, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167832

RESUMEN

Highly multiplexed protein imaging is emerging as a potent technique for analyzing protein distribution within cells and tissues in their native context. However, existing cell annotation methods utilizing high-plex spatial proteomics data are resource intensive and necessitate iterative expert input, thereby constraining their scalability and practicality for extensive datasets. We introduce MAPS (Machine learning for Analysis of Proteomics in Spatial biology), a machine learning approach facilitating rapid and precise cell type identification with human-level accuracy from spatial proteomics data. Validated on multiple in-house and publicly available MIBI and CODEX datasets, MAPS outperforms current annotation techniques in terms of speed and accuracy, achieving pathologist-level precision even for typically challenging cell types, including tumor cells of immune origin. By democratizing rapidly deployable and scalable machine learning annotation, MAPS holds significant potential to expedite advances in tissue biology and disease comprehension.


Asunto(s)
Aprendizaje Automático , Patólogos , Humanos , Diagnóstico por Imagen , Proteómica/métodos
6.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38260392

RESUMEN

Neuroblastoma is a pediatric cancer arising from the developing sympathoadrenal lineage with complex inter- and intra-tumoral heterogeneity. To chart this complexity, we generated a comprehensive cell atlas of 55 neuroblastoma patient tumors, collected from two pediatric cancer institutions, spanning a range of clinical, genetic, and histologic features. Our atlas combines single-cell/nucleus RNA-seq (sc/scRNA-seq), bulk RNA-seq, whole exome sequencing, DNA methylation profiling, spatial transcriptomics, and two spatial proteomic methods. Sc/snRNA-seq revealed three malignant cell states with features of sympathoadrenal lineage development. All of the neuroblastomas had malignant cells that resembled sympathoblasts and the more differentiated adrenergic cells. A subset of tumors had malignant cells in a mesenchymal cell state with molecular features of Schwann cell precursors. DNA methylation profiles defined four groupings of patients, which differ in the degree of malignant cell heterogeneity and clinical outcomes. Using spatial proteomics, we found that neuroblastomas are spatially compartmentalized, with malignant tumor cells sequestered away from immune cells. Finally, we identify spatially restricted signaling patterns in immune cells from spatial transcriptomics. To facilitate the visualization and analysis of our atlas as a resource for further research in neuroblastoma, single cell, and spatial-omics, all data are shared through the Human Tumor Atlas Network Data Commons at www.humantumoratlas.org.

7.
J Immunother Cancer ; 12(1)2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272561

RESUMEN

BACKGROUND: Recent trials suggest that programmed cell death 1 (PD-1)-directed immunotherapy may be beneficial for some patients with anal squamous cell carcinoma and biomarkers predictive of response are greatly needed. METHODS: This multicenter phase II clinical trial (NCT02919969) enrolled patients with metastatic or locally advanced incurable anal squamous cell carcinoma (n=32). Patients received pembrolizumab 200 mg every 3 weeks. The primary endpoint of the trial was objective response rate (ORR). Exploratory objectives included analysis of potential predictive biomarkers including assessment of tumor-associated immune cell populations with multichannel immunofluorescence and analysis of circulating tumor tissue modified viral-human papillomavirus DNA (TTMV-HPV DNA) using serially collected blood samples. To characterize the clinical features of long-term responders, we combined data from our prospective trial with a retrospective cohort of patients with anal cancer treated with anti-PD-1 immunotherapy (n=18). RESULTS: In the phase II study, the ORR to pembrolizumab monotherapy was 9.4% and the median progression-free survival was 2.2 months. Despite the high level of HPV positivity observed with circulating TTMV-HPV DNA testing, the majority of patients had low levels of tumor-associated CD8+PD-1+ T cells on pretreatment biopsy. Patients who benefited from pembrolizumab had decreasing TTMV-HPV DNA scores and a complete responder's TTMV-HPV DNA became undetectable. Long-term pembrolizumab responses were observed in one patient from the trial (5.3 years) and three patients (2.5, 6, and 8 years) from the retrospective cohort. Long-term responders had HPV-positive tumors, lacked liver metastases, and achieved a radiological complete response. CONCLUSIONS: Pembrolizumab has durable efficacy in a rare subset of anal cancers. However, despite persistence of HPV infection, indicated by circulating HPV DNA, most advanced anal cancers have low numbers of tumor-associated CD8+PD-1+ T cells and are resistant to pembrolizumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias del Ano , Carcinoma de Células Escamosas , Infecciones por Papillomavirus , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Receptor de Muerte Celular Programada 1 , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias del Ano/tratamiento farmacológico , ADN
8.
J Clin Oncol ; 42(11): 1311-1321, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38207230

RESUMEN

PURPOSE: Although immune checkpoint inhibitors (ICI) have extended survival in patients with non-small-cell lung cancer (NSCLC), acquired resistance (AR) to ICI frequently develops after an initial benefit. However, the mechanisms of AR to ICI in NSCLC are largely unknown. METHODS: Comprehensive tumor genomic profiling, machine learning-based assessment of tumor-infiltrating lymphocytes, multiplexed immunofluorescence, and/or HLA-I immunohistochemistry (IHC) were performed on matched pre- and post-ICI tumor biopsies from patients with NSCLC treated with ICI at the Dana-Farber Cancer Institute who developed AR to ICI. Two additional cohorts of patients with intervening chemotherapy or targeted therapies between biopsies were included as controls. RESULTS: We performed comprehensive genomic profiling and immunophenotypic characterization on samples from 82 patients with NSCLC and matched pre- and post-ICI biopsies and compared findings with a control cohort of patients with non-ICI intervening therapies between biopsies (chemotherapy, N = 32; targeted therapies, N = 89; both, N = 17). Putative resistance mutations were identified in 27.8% of immunotherapy-treated cases and included acquired loss-of-function mutations in STK11, B2M, APC, MTOR, KEAP1, and JAK1/2; these acquired alterations were not observed in the control groups. Immunophenotyping of matched pre- and post-ICI samples demonstrated significant decreases in intratumoral lymphocytes, CD3e+ and CD8a+ T cells, and PD-L1-PD1 engagement, as well as increased distance between tumor cells and CD8+PD-1+ T cells. There was a significant decrease in HLA class I expression in the immunotherapy cohort at the time of AR compared with the chemotherapy (P = .005) and the targeted therapy (P = .01) cohorts. CONCLUSION: These findings highlight the genomic and immunophenotypic heterogeneity of ICI resistance in NSCLC, which will need to be considered when developing novel therapeutic strategies aimed at overcoming resistance.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Genómica , Inmunofenotipificación , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/uso terapéutico
9.
Ann Hematol ; 103(1): 185-198, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37851072

RESUMEN

Antibodies targeting PD-1 or 4-1BB achieve objective responses in follicular lymphoma (FL), but only in a minority of patients. We hypothesized that targeting multiple immune receptors could overcome immune resistance and increase response rates in patients with relapsed/refractory FL. We therefore conducted a phase 1b trial testing time-limited therapy with different immunotherapy doublets targeting 4-1BB (utomilumab), OX-40 (ivuxolimab), and PD-L1 (avelumab) in combination with rituximab among patients with relapsed/refractory grade 1-3A FL. Patients were enrolled onto 2 of 3 planned cohorts (cohort 1 - rituximab/utomilumab/avelumab; cohort 2 - rituximab/ivuxolimab/utomilumab). 3+3 dose escalation was followed by dose expansion at the recommended phase 2 dose (RP2D). Twenty-four patients were enrolled (16 in cohort 1 and 9 in cohort 2, with one treated in both cohorts). No patients discontinued treatment due to adverse events and the RP2D was the highest dose level tested in both cohorts. In cohort 1, the objective and complete response rates were 44% and 19%, respectively (50% and 30%, respectively, at RP2D). In cohort 2, no responses were observed. The median progression-free survivals in cohorts 1 and 2 were 6.9 and 3.2 months, respectively. In cohort 1, higher density of PD-1+ tumor-infiltrating T-cells on baseline biopsies and lower density of 4-1BB+ and TIGIT+ T-cells in on-treatment biopsies were associated with response. Abundance of Akkermansia in stool samples was also associated with response. Our results support a possible role for 4-1BB agonist therapy in FL and suggest that features of the tumor microenvironment and stool microbiome may be associated with clinical outcomes (NCT03636503).


Asunto(s)
Antineoplásicos , Linfoma Folicular , Humanos , Rituximab , Linfoma Folicular/tratamiento farmacológico , Receptor de Muerte Celular Programada 1 , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Anticuerpos Monoclonales/efectos adversos , Inmunoterapia , Microambiente Tumoral
10.
Mod Pathol ; 37(1): 100352, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839675

RESUMEN

In this study, we performed a comprehensive molecular analysis of paired skin and peripheral blood/bone marrow (BM) samples from 17 patients with cutaneous myeloid or cutaneous histiocytic-dendritic neoplasms. The cutaneous manifestations included 10 patients with cutaneous acute myeloid leukemia (c-AML), 2 patients with full or partial Langerhans cell differentiation, 2 patients with blastic plasmacytoid dendritic cell neoplasms (BPDCN), 1 patient with both Langerhans cell differentiation and BPDCN, and 2 patients with full or partial indeterminate dendritic cell differentiation. Seven of the 10 c-AML patients (70%) exhibited concurrent or subsequent marrow involvement by acute myeloid leukemia, with all 7 cases (100%) demonstrating shared clonal mutations in both the skin and BM. However, clonal relatedness was documented in one additional case that never had any BM involvement. Nevertheless, NPM1 mutations were identified in 7 of the 10 (70%) of these c-AML cases while one had KMT2A rearrangement and one showed inv(16). All 3 patients (100%) with Langerhans cell neoplasms, 2 patients with BPDCN (100%), and one of the 2 patients (50%) with other cutaneous dendritic cell neoplasms also demonstrated shared mutations between the skin and concurrent or subsequent myeloid neoplasms. Both BM and c-AML shared identical founding drivers, with a predominance of NPM1, DNMT3A, and translocations associated with monocytic differentiation, with common cutaneous-only mutations involving genes in the signal transduction and epigenetic pathways. Cutaneous histiocytic-dendritic neoplasms shared founding drivers in ASXL1, TET2, and/or SRSF2. However, in the Langerhans cell histiocytosis or histiocytic sarcoma cases, there exist recurrent secondary RAS pathway hits, whereas cutaneous BPDCN cases exhibit copy number or structural variants. These results enrich and broaden our understanding of clonally related cutaneous manifestations of myeloid neoplasms and further illuminate the highly diverse spectrum of morphologic and immunophenotypic features they exhibit.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Neoplasias Cutáneas , Humanos , Médula Ósea/patología , Células Dendríticas/metabolismo , Mutación , Leucemia Mieloide Aguda/patología , Neoplasias Hematológicas/patología , Neoplasias Cutáneas/patología , Trastornos Mieloproliferativos/patología , Proteínas Nucleares/genética
11.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37425718

RESUMEN

TP53 is the most frequently mutated gene across many cancers and is associated with shorter survival in lung adenocarcinoma (LUAD). To define how TP53 mutations affect the LUAD tumor microenvironment (TME), we constructed a multi-omic cellular and spatial tumor atlas of 23 treatment-naïve human lung tumors. We found that TP53 -mutant ( TP53 mut ) malignant cells lose alveolar identity and upregulate highly proliferative and entropic gene expression programs consistently across resectable LUAD patient tumors, genetically engineered mouse models, and cell lines harboring a wide spectrum of TP53 mutations. We further identified a multicellular tumor niche composed of SPP1 + macrophages and collagen-expressing fibroblasts that coincides with hypoxic, pro-metastatic expression programs in TP53 mut tumors. Spatially correlated angiostatic and immune checkpoint interactions, including CD274 - PDCD1 and PVR - TIGIT , are also enriched in TP53 mut LUAD tumors, which may influence response to checkpoint blockade therapy. Our methodology can be further applied to investigate mutation-specific TME changes in other cancers.

12.
J Immunother Cancer ; 11(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040420

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a challenging target for immunotherapy because it has an immunosuppressive tumor microenvironment. Neoadjuvant chemoradiotherapy can increase tumor-infiltrating lymphocyte (TIL) density, which may predict overall survival (OS). We hypothesized that adding programmed cell death protein 1 (PD-1) blockade to chemoradiotherapy would be well tolerated and increase TILs among patients with localized PDAC. METHODS: Patients were randomized 2:1 to Arm A (receiving pembrolizumab plus chemoradiotherapy (capecitabine and external beam radiation)) or Arm B (receiving chemoradiotherapy alone) before anticipated pancreatectomy. Primary endpoints were (1) incidence and severity of adverse events during neoadjuvant therapy and (2) density of TILs in resected tumor specimens. TIL density was assessed using multiplexed immunofluorescence histologic examination. RESULTS: Thirty-seven patients were randomized to Arms A (n=24) and B (n=13). Grade ≥3 adverse events related to neoadjuvant treatment were experienced by 9 (38%) and 4 (31%) patients in Arms A and B, respectively, with one patient experiencing dose-limiting toxicity in Arm A. Seventeen (71%) and 7 (54%) patients in Arms A and B, respectively, underwent pancreatectomy. Median CD8+ T-cell densities in Arms A and B were 67.4 (IQR: 39.2-141.8) and 37.9 (IQR: 22.9-173.4) cells/mm2, respectively. Arms showed no noticeable differences in density of CD8+Ki67+, CD4+, or CD4+FOXP3+ regulatory T cells; M1-like and M2-like macrophages; or granulocytes. Median OS durations were 27.8 (95% CI: 17.1 to NR) and 24.3 (95% CI: 12.6 to NR) months for Arms A and B, respectively. CONCLUSIONS: Adding pembrolizumab to neoadjuvant chemoradiotherapy was safe. However, no convincing effect on CD8+ TILs was observed.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Terapia Neoadyuvante , Adenocarcinoma/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Microambiente Tumoral
13.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38106230

RESUMEN

Emerging imaging spatial transcriptomics (iST) platforms and coupled analytical methods can recover cell-to-cell interactions, groups of spatially covarying genes, and gene signatures associated with pathological features, and are thus particularly well-suited for applications in formalin fixed paraffin embedded (FFPE) tissues. Here, we benchmarked the performance of three commercial iST platforms on serial sections from tissue microarrays (TMAs) containing 23 tumor and normal tissue types for both relative technical and biological performance. On matched genes, we found that 10x Xenium shows higher transcript counts per gene without sacrificing specificity, but that all three platforms concord to orthogonal RNA-seq datasets and can perform spatially resolved cell typing, albeit with different false discovery rates, cell segmentation error frequencies, and with varying degrees of sub-clustering for downstream biological analyses. Taken together, our analyses provide a comprehensive benchmark to guide the choice of iST method as researchers design studies with precious samples in this rapidly evolving field.

14.
medRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961528

RESUMEN

Because of the low mutational burden, children with acute myeloid leukemia (AML) are thought to have a 'cold' tumor microenvironment and consequently, a low likelihood of response to T cell-directed immunotherapies. Here, we provide a multidimensional overview of the tumor immune microenvironment in newly diagnosed pediatric AML. On a cohort level, we demonstrate wide variation in T cell infiltration with nearly one-third of cases harboring an immune-infiltrated bone marrow. These immune-infiltrated cases are characterized by a decreased abundance of M2-like macrophages, which we find to be associated with response to T cell-directed immunotherapy in adult AML. On an organizational level, we reveal the composition of spatially organized immune aggregates in pediatric AML, and show that in the adult setting such aggregates in post-treatment bone marrow and extramedullary sites associate with response to ipilimumab-based therapy. Altogether, our study provides immune correlates of response to T cell-directed immunotherapies and indicates starting points for further investigations into immunomodulatory mechanisms in AML.

15.
Nature ; 623(7985): 157-166, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37853118

RESUMEN

Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Herpesvirus Humano 1 , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Glioblastoma/inmunología , Glioblastoma/patología , Nestina/genética , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Virus Oncolíticos/fisiología , Reproducibilidad de los Resultados , Análisis de Supervivencia , Linfocitos T/citología , Linfocitos T/inmunología , Resultado del Tratamiento , Microambiente Tumoral/inmunología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología
16.
Sci Adv ; 9(39): eadd9668, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37756410

RESUMEN

Neuroendocrine tumors (NETs) are rare cancers that most often arise in the gastrointestinal tract and pancreas. The fundamental mechanisms driving gastroenteropancreatic (GEP)-NET growth remain incompletely elucidated; however, the heterogeneous clinical behavior of GEP-NETs suggests that both cellular lineage dynamics and tumor microenvironment influence tumor pathophysiology. Here, we investigated the single-cell transcriptomes of tumor and immune cells from patients with gastroenteropancreatic NETs. Malignant GEP-NET cells expressed genes and regulons associated with normal, gastrointestinal endocrine cell differentiation, and fate determination stages. Tumor and lymphoid compartments sparsely expressed immunosuppressive targets commonly investigated in clinical trials, such as the programmed cell death protein-1/programmed death ligand-1 axis. However, infiltrating myeloid cell types within both primary and metastatic GEP-NETs were enriched for genes encoding other immune checkpoints, including VSIR (VISTA), HAVCR2 (TIM3), LGALS9 (Gal-9), and SIGLEC10. Our findings highlight the transcriptomic heterogeneity that distinguishes the cellular landscapes of GEP-NET anatomic subtypes and reveal potential avenues for future precision medicine therapeutics.


Asunto(s)
Neoplasias Intestinales , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendocrinos/genética , Neoplasias Intestinales/genética , Neoplasias Gástricas/genética , Neoplasias Pancreáticas/genética , Microambiente Tumoral/genética
17.
Sci Immunol ; 8(87): eadf4968, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37683037

RESUMEN

About 50% of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) experience recurrences after definitive therapy. The presurgical administration of anti-programmed cell death protein 1 (PD-1) immunotherapy results in substantial pathologic tumor responses (pTR) within the tumor microenvironment (TME). However, the mechanisms underlying the dynamics of antitumor T cells upon neoadjuvant PD-1 blockade remain unresolved, and approaches to increase pathologic responses are lacking. In a phase 2 trial (NCT02296684), we observed that 45% of patients treated with two doses of neoadjuvant pembrolizumab experienced marked pTRs (≥50%). Single-cell analysis of 17,158 CD8+ T cells from 14 tumor biopsies, including 6 matched pre-post neoadjuvant treatment, revealed that responding tumors had clonally expanded putative tumor-specific exhausted CD8+ tumor-infiltrating lymphocytes (TILs) with a tissue-resident memory program, characterized by high cytotoxic potential (CTX+) and ZNF683 expression, within the baseline TME. Pathologic responses after 5 weeks of PD-1 blockade were consistent with activation of preexisting CTX+ZNF683+CD8+ TILs, paralleling loss of viable tumor and associated tumor antigens. Response was associated with high numbers of CD103+PD-1+CD8+ T cells infiltrating pretreatment lesions, whereas revival of nonexhausted persisting clones and clonal replacement were modest. By contrast, nonresponder baseline TME exhibited a relative absence of ZNF683+CTX+ TILs and subsequent accumulation of highly exhausted clones. In HNSCC, revival of preexisting ZNF683+CTX+ TILs is a major mechanism of response in the immediate postneoadjuvant setting.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Humanos , Terapia Neoadyuvante , Linfocitos T CD8-positivos , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Microambiente Tumoral
18.
Histopathology ; 83(4): 569-581, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37679051

RESUMEN

AIMS: Although TSC1 or TSC2 inactivating mutations that lead to mTORC1 hyperactivation have been reported in hepatic angiomyolipomas (hAML), the role of other somatic genetic events that may contribute to hAML development is unknown. There are also limited data regarding the tumour microenvironment (TME) of hAML. The aim of the present study was to identify other somatic events in genomic level and changes in TME that contribute to tumorigenesis in hAML. METHODS AND RESULTS: In this study, we performed exome sequencing in nine sporadic hAML tumours and deep-coverage targeted sequencing for TSC2 in three additional hAML. Immunohistochemistry and multiplex immunofluorescence were carried out for 15 proteins to characterise the tumour microenvironment and assess immune cell infiltration. Inactivating somatic variants in TSC2 were identified in 10 of 12 (83%) cases, with a median allele frequency of 13.6%. Five to 18 somatic variants (median number: nine, median allele frequency 21%) not in TSC1 or TSC2 were also identified, mostly of uncertain clinical significance. Copy number changes were rare, but detection was impaired by low tumour purity. Immunohistochemistry demonstrated numerous CD68+ macrophages of distinct appearance from Küpffer cells. Multiplex immunofluorescence revealed low numbers of exhausted PD-1+/PD-L1+, FOXP3+ and CD8+ T cells. CONCLUSION: hAML tumours have consistent inactivating mutations in TSC2 and have a low somatic mutation rate, similar to other TSC-associated tumours. Careful histological review, standard IHC and multiplex immunofluorescence demonstrated marked infiltration by non-neoplastic inflammatory cells, mostly macrophages.


Asunto(s)
Angiomiolipoma , Neoplasias Gastrointestinales , Neoplasias Hepáticas , Proteína 2 del Complejo de la Esclerosis Tuberosa , Humanos , Angiomiolipoma/genética , Neoplasias Hepáticas/genética , Macrófagos , Mutación , Microambiente Tumoral , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
19.
Cell Rep Med ; 4(9): 101189, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37729872

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is molecularly heterogeneous, immune infiltrated, and selectively sensitive to immune checkpoint inhibition (ICI). However, the joint tumor-immune states that mediate ICI response remain elusive. We develop spatially aware deep-learning models of tumor and immune features to learn representations of ccRCC tumors using diagnostic whole-slide images (WSIs) in untreated and treated contexts (n = 1,102 patients). We identify patterns of grade heterogeneity in WSIs not achievable through human pathologist analysis, and these graph-based "microheterogeneity" structures associate with PBRM1 loss of function and with patient outcomes. Joint analysis of tumor phenotypes and immune infiltration identifies a subpopulation of highly infiltrated, microheterogeneous tumors responsive to ICI. In paired multiplex immunofluorescence images of ccRCC, microheterogeneity associates with greater PD1 activation in CD8+ lymphocytes and increased tumor-immune interactions. Our work reveals spatially interacting tumor-immune structures underlying ccRCC biology that may also inform selective response to ICI.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Aprendizaje Profundo , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Fenotipo
20.
Blood ; 142(14): 1219-1232, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37467575

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease with at least 5 recognized molecular subtypes. Cluster 5 (C5)/MCD tumors frequently exhibit concurrent alterations in the toll-like receptor (TLR) and B-cell receptor (BCR) pathway members, MYD88L265P and CD79B, and have a less favorable prognosis. In healthy B cells, the synergy between TLR and BCR signaling pathways integrates innate and adaptive immune responses and augments downstream NF-κB activation. In addition, physiologic TLR9 pathway engagement via MYD88, protein tyrosine kinase 2 (PYK2), and dedicator of cytokinesis 8 (DOCK8) increases proximal BCR signaling in healthy murine B cells. Although C5/MCD DLBCLs are selectively sensitive to Bruton tyrosine kinase (BTK) inhibition in in vitro studies and certain clinical trials, the role of mutated MYD88 in proximal BCR signaling remains undefined. Using engineered DLBCL cell line models, we found that concurrent MYD88L265P and CD79B alterations significantly increased the magnitude and duration of proximal BCR signaling, at the level of spleen tyrosine kinase and BTK, and augmented PYK2-dependent DOCK8 phosphorylation. MYD88L265P DLBCLs have significantly increased colocalization of DOCK8 with both MYD88 and the proximal BCR-associated Src kinase, LYN, in comparison with MYD88WT DLBCLs, implicating DOCK8 in MYD88L265P/proximal BCR cross talk. Additionally, DOCK8 depletion selectively decreased proximal BCR signaling, cellular proliferation, and viability of DLBCLs with endogenous MYD88L265P/CD79BY196F alterations and increased the efficacy of BTK blockade in these lymphomas. Therefore, MYD88L265P/DOCK8-enhanced proximal BCR signaling is a likely mechanism for the increased sensitivity of C5/MCD DLBCLs to BTK blockade.


Asunto(s)
Linfoma de Células B Grandes Difuso , Factor 88 de Diferenciación Mieloide , Animales , Humanos , Ratones , Quinasa 2 de Adhesión Focal/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Linfoma de Células B Grandes Difuso/patología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Receptores Toll-Like
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...