Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biochem ; 478(5): 1117-1128, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36222986

RESUMEN

In cancer, the Epithelial to Mesenchymal Transition (EMT) is the process in which epithelial cells acquire mesenchymal features that allow metastasis, and chemotherapy resistance. Growth hormone (GH) has been associated with melanoma, breast, and endometrial cancer progression through an autocrine regulation of EMT. Since exogenous and autocrine expression of GH is known to have different molecular effects, we investigated whether exogenous GH is capable of regulating the EMT of cancer cells. Furthermore, we investigated whether exogenous GH could promote EMT in non-cancerous cells. To study the effect of GH (100 ng/ml) on cancer and non-cancer cells, we used HeLa and HEK293 cell lines, respectively. We evaluated the loss of cell-cell contacts, by cell scattering assay and migration by wound-healing assay. Additionally, we evaluated the morphological changes by phalloidin-staining. Finally, we evaluated the molecular markers E-cadherin and vimentin by flow cytometry. GH enhances cell scattering and the migratory rate and promotes morphological changes such as cell area increase and actin cytoskeleton filaments formation on HeLa cell line. Moreover, we found that GH favors the expression of the mesenchymal protein vimentin, followed by an increase in E-cadherin's epithelial protein expression, characteristics of an epithelial-mesenchymal hybrid phenotype that is associated with metastasis. On HEK293cells, GH promotes morphological changes, including cell area increment and filopodia formation, but not affects scattering, migration, nor EMT markers expression. Our results suggest that exogenous GH might participate in cervical cancer progression favoring a hybrid EMT phenotype but not on non-cancerous HEK293 cells.


Asunto(s)
Transición Epitelial-Mesenquimal , Hormona del Crecimiento , Humanos , Células HeLa , Células HEK293 , Hormona del Crecimiento/farmacología , Vimentina , Línea Celular Tumoral , Cadherinas/metabolismo , Factores de Transcripción , Movimiento Celular
2.
Scand J Immunol ; 87(6): e12664, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29603313

RESUMEN

CD38 is a transmembrane protein expressed in B lymphocytes, and is able to induce responses as proliferation, differentiation or apoptosis. Several reports propose that CD38 deficiency accelerates autoimmune processes in murine models of autoimmune diabetes, lymphoproliferation and rheumatoid arthritis. Other reports have shown elevated CD38 expression in B and T cells from patients with autoimmunity; however, the role of CD38 is still unclear in the development of autoimmunity. Recently, it has been characterized as CD1dhi CD5+ regulatory B cell subpopulation able to produce IL-10, and the loss of these cells exacerbates the autoimmunity in murine models. Here, we report that CD38-/- mice exhibited elevated titres of ANAS, anti-dsDNA autoantibodies from 12 months of age and were higher by 16 months of age and mice presented kidney damage. Interestingly, there is a reduction in the survival of CD38-/- mice compared to the WT. Furthermore, CD38 is highly expressed by CD1dhigh CD5+ regulatory B cells, and the agonistic anti-CD38 stimulus plus LPS was able to increase the percentage of this cell subset and its ability to induce IL-10 production. Together, these results suggest that CD38 could play a role in the control of autoimmune diseases through their expression on regulatory B cells.


Asunto(s)
ADP-Ribosil Ciclasa 1/deficiencia , Anticuerpos Antinucleares/inmunología , Enfermedades Autoinmunes/genética , Linfocitos B Reguladores/inmunología , Interleucina-10/biosíntesis , Glicoproteínas de Membrana/deficiencia , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Enfermedades Autoinmunes/inmunología , Autoinmunidad/genética , Autoinmunidad/inmunología , Células Cultivadas , Interleucina-10/inmunología , Enfermedades Renales/inmunología , Lipopolisacáridos/inmunología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...