Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(43): 27314-27328, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30357167

RESUMEN

We report optical absorption and luminescence measurements in pure and trivalent neodymium (Nd3+) doped LaVO4 crystals up to 25 GPa. Nd3+ luminescence has been employed as a tool to follow the structural changes in the crystal. We also present band-structure and crystal-field calculations that provide the theoretical framework to accurately explain the observed experimental results. In particular, both optical absorption and luminescence measurements evidence that a phase transition takes place close to 12 GPa. They also provide information on the pressure dependence of the band-gap as well as the emission lines under compression. We found drastic changes in the optical properties of LaVO4 when the phase transition to a BaWO4-II structure occurs, which can be related to changes in the coordination number of vanadium ions and in the local sites of Nd3+. Reported results are analyzed in comparison with those of previous X-ray diffraction and Raman experiments, as well as with the features of related compounds. For the first time, a consistent picture is reported explaining the behavior of the optical and electronic properties of LaVO4 at high-pressures.

2.
Opt Express ; 25(22): 27845-27856, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29092254

RESUMEN

The thermal sensing capability of the Tm3+-doped yttrium orthoaluminate nanoperovskite in the infrared range, synthetized by a sol-gel method, was studied. The temperature dependence of the infrared upconverted emission bands located at around 705 nm (3F2,3→3H6) and 800 nm (3H4→3H6) of YAP: Tm3+ nanoperovskite under excitation at 1210 nm was analyzed from RT up to 425 K. Calibration of the optical sensor has been made using the fluorescence intensity ratio technique, showing a high sensitivity in the near-infrared compared to other trivalent rare-earth based optical sensors working in the same range. In addition, a second calibration procedure of the YAP: Tm3+ optical sensor was performed by using the FIR technique on the emission band associated to the 3H4→3H6 transition in the physiological temperature range (293-333 K), showing a very high relative sensitivity compared with other rare-earth based optical temperature sensors working in the physiological range. Moreover, the main advantage compared with other optical sensors is that the excitation source and the upconverted emissions do not overlap, since they lie in different biological windows, thus allowing its potential use as an optical temperature probe in the near-infrared range for biological applications.

3.
Small ; 13(33)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28692791

RESUMEN

A nonporous laminar coordination polymer of formula [Cu2 I2 (2-aminopyrazine)]n is prepared by direct reaction between CuI and 2-aminopyrazine, two industrially available building blocks. The fine tuning of the reaction conditions allows obtaining [Cu2 I2 (2-aminopyrazine)]n in micrometric and nanometric sizes with same structure and composition. Interestingly, both materials show similar reversible thermo- and pressure-luminescent response as well as reversible electrical response to volatile organic solvents such as acetic acid. X-ray diffraction studies under different conditions, temperatures and pressures, in combination with theoretical calculations allow rationalizing the physical properties of this compound and its changes under physical stimuli. Thus, the emission dramatically increases when lowering the temperature, while an enhancement of the pressure produces a decrease in the emission intensity. These observations emerge as a direct consequence of the high structural flexibility of the Cu2 I2 chains which undergo a contraction in CuCu distances as far as temperature decreases or pressure increases. However, the strong structural changes observed under high pressure lead to an unexpected effect that produces a less effective CuCu orbital overlapping that justifies the decrease in the intensity emission. This work shows the high potential of materials based on Cu2 I2 chains for new applications.

4.
Nanotechnology ; 27(2): 025701, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26618997

RESUMEN

A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu(3+) nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu(3+) photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two (5)D0-->(7)F0 photoluminescence peaks confirms the existence of two local environments for Eu(3+), at least for the low-pressure phase. One environment is the expected for substituting Y(3+) and the other is likely a disordered environment possibly found at the surface of the nanoboxes.

5.
J Phys Condens Matter ; 27(46): 465401, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26500113

RESUMEN

The compression process in the α-phase of europium trimolybdate was revised employing several experimental techniques. X-ray diffraction (using synchrotron and laboratory radiation sources), Raman scattering and photoluminescence experiments were performed up to a maximum pressure of 21 GPa. In addition, the crystal structure and Raman mode frequencies have been studied by means of first-principles density functional based methods. Results suggest that the compression process of α-Eu2(MoO4)3 can be described by three stages. Below 8 GPa, the α-phase suffers an isotropic contraction of the crystal structure. Between 8 and 12 GPa, the compound undergoes an anisotropic compression due to distortion and rotation of the MoO4 tetrahedra. At pressures above 12 GPa, the amorphization process starts without any previous occurrence of a crystalline-crystalline phase transition in the whole range of pressure. This behavior clearly differs from the process of compression and amorphization in trimolybdates with [Formula: see text]-phase and tritungstates with α-phase.

6.
J Phys Condens Matter ; 25(2): 025303, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23197076

RESUMEN

We describe the results of x-ray absorption experiments carried out to deduce structural and chemical information in Eu(3+) doped, transparent, oxyfluoride glass and nanostructured glass-ceramic samples. The spectra were measured at the Pb and Eu-L(III) edges. The Eu environment in the glass samples is observed to be similar to that of EuF(3). Complementary x-ray diffraction experiments show that thermal annealing creates ß-PbF(2) type nanocrystals. X-ray absorption indicates that Eu ions act as seeds in the nanocrystal formation. There is evidence of interstitial fluorine atoms around Eu ions as well as Eu dimers. X-ray absorption at the Pb-L(III) edge shows that after the thermal treatment most lead atoms form a PbO amorphous phase and that only 10% of the lead atoms remain available to form ß-PbF(2) type nanocrystals. Both x-ray diffraction and absorption point to a high Eu content in the nanocrystals. Our study suggests new approaches to the oxyfluoride glass-ceramic synthesis in order to further improve their properties.


Asunto(s)
Cerámica/química , Cristalización/métodos , Europio/química , Vidrio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Espectroscopía de Absorción de Rayos X/métodos , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Transición de Fase
7.
J Nanosci Nanotechnol ; 12(6): 4495-501, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22905491

RESUMEN

Lu3Ga5O12 nano-garnet powders doped with Ho(3+)/Yb(3+) ions have been prepared using a citrate sol-gel technique. The structural and morphological properties have been investigated by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The materials are found to exist in single phase of cubic garnet structure with an average particle size of around 45 nm. The Ho(3+)/Yb(3+)-doped Lu3Ga5O12 nano-garnet powders give rise to an intense green and weak red emission of Ho3+ ions under 457.5 nm direct excitation. Moreover, when the Yb3+ ions are excited at 950 nm a very bright green luminescence of the Ho3+ ions is observed by the naked eyes even for such low laser power as 10 mW and the intensity of the red emission have been increased compared to that found under direct excitation of the Ho3+ ions. The power dependency and dynamics of the infrared-to-visible upconverted luminescence confirm the existence of different two-photon energy transfer processes. All these results have been compared with those obtained for other garnets doped with similar lanthanide ions which suggest that the Lu3Ga5O12 nano-garnets are potential materials for light emitting devices.


Asunto(s)
Cristalización/métodos , Luminiscencia , Mediciones Luminiscentes , Lutecio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
8.
Opt Express ; 20(9): 10393-8, 2012 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-22535129

RESUMEN

Hypersensitivity to pressure and temperature is observed in the near-infrared emission lines of the Nd(3+) ion in a Cr(3+),Nd(3+):Gd(3)Sc(2)Ga(3)O(12) crystal, associated to the R(1,2)((4)F(3/2))→Z(5)((4)I(9/2)) and R(1,2)((4)F(3/2))→Z(1)((4)I(9/2)) transitions. The former emissions show large linear pressure coefficients of -11.3 cm(-1)/GPa and -8.8 cm(-1)/GPa, while the latter show high thermal sensitivity in the low temperature range. Thus this garnet crystal can be considered a potential optical pressure and/or temperature sensor in high pressure and temperature experiments up to 12 GPa and below room temperature, used in diamond anvil cells and excited with different UV and visible commercial laser due to the multiple Cr(3+) and Nd(3+) absorption bands.


Asunto(s)
Gadolinio/química , Mediciones Luminiscentes/instrumentación , Fotometría/instrumentación , Transductores de Presión , Cristalización , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA