Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 224(3)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37119802

RESUMEN

Heterochromatin is characterized by an enrichment of repetitive elements and low gene density and is often maintained in a repressed state across cell division and differentiation. The silencing is mainly regulated by repressive histone marks such as H3K9 and H3K27 methylated forms and the heterochromatin protein 1 (HP1) family. Here, we analyzed in a tissue-specific manner the binding profile of the two HP1 homologs in Caenorhabditis elegans, HPL-1 and HPL-2, at the L4 developmental stage. We identified the genome-wide binding profile of intestinal and hypodermal HPL-2 and intestinal HPL-1 and compared them with heterochromatin marks and other features. HPL-2 associated preferentially to the distal arms of autosomes and correlated positively with the methylated forms of H3K9 and H3K27. HPL-1 was also enriched in regions containing H3K9me3 and H3K27me3 but exhibited a more even distribution between autosome arms and centers. HPL-2 showed a differential tissue-specific enrichment for repetitive elements conversely with HPL-1, which exhibited a poor association. Finally, we found a significant intersection of genomic regions bound by the BLMP-1/PRDM1 transcription factor and intestinal HPL-1, suggesting a corepressive role during cell differentiation. Our study uncovers both shared and singular properties of conserved HP1 proteins, providing information about genomic binding preferences in relation to their role as heterochromatic markers.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Homólogo de la Proteína Chromobox 5 , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica
2.
Front Physiol ; 12: 696275, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276415

RESUMEN

Metabolic disorders are frequently associated with physiological changes that occur during ageing. The mitochondrial prohibitin complex (PHB) is an evolutionary conserved context-dependent modulator of longevity, which has been linked to alterations in lipid metabolism but which biochemical function remains elusive. In this work we aimed at elucidating the molecular mechanism by which depletion of mitochondrial PHB shortens the lifespan of wild type animals while it extends that of insulin signaling receptor (daf-2) mutants. A liquid chromatography coupled with mass spectrometry approach was used to characterize the worm lipidome of wild type and insulin deficient animals upon PHB depletion. Toward a mechanistic interpretation of the insights coming from this analysis, we used a combination of biochemical, microscopic, and lifespan analyses. We show that PHB depletion perturbed glycerophospholipids and glycerolipids pools differently in short- versus long-lived animals. Interestingly, PHB depletion in otherwise wild type animals induced the endoplasmic reticulum (ER) unfolded protein response (UPR), which was mitigated in daf-2 mutants. Moreover, depletion of DNJ-21, which functionally interacts with PHB in mitochondria, mimicked the effect of PHB deficiency on the UPRER and on the lifespan of wild type and insulin signaling deficient mutants. Our work shows that PHB differentially modulates lipid metabolism depending on the worm's metabolic status and provides evidences for a new link between PHB and ER homeostasis in ageing regulation.

3.
Aging Cell ; 20(5): e13359, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33939875

RESUMEN

Mitochondrial prohibitins (PHB) are highly conserved proteins with a peculiar effect on lifespan. While PHB depletion shortens lifespan of wild-type animals, it enhances longevity of a plethora of metabolically compromised mutants, including target of rapamycin complex 2 (TORC2) mutants sgk-1 and rict-1. Here, we show that sgk-1 mutants have impaired mitochondrial homeostasis, lipogenesis and yolk formation, plausibly due to alterations in membrane lipid and sterol homeostasis. Remarkably, all these features are suppressed by PHB depletion. Our analysis shows the requirement of SRBP1/SBP-1 for the lifespan extension of sgk-1 mutants and the further extension conferred by PHB depletion. Moreover, although the mitochondrial unfolded protein response (UPRmt ) and autophagy are induced in sgk-1 mutants and upon PHB depletion, they are dispensable for lifespan. However, the enhanced longevity caused by PHB depletion in sgk-1 mutants requires both, the UPRmt and autophagy, but not mitophagy. We hypothesize that UPRmt induction upon PHB depletion extends lifespan of sgk-1 mutants through autophagy and probably modulation of lipid metabolism.


Asunto(s)
Autofagia , Proteínas de Caenorhabditis elegans/genética , Longevidad/fisiología , Mitocondrias/fisiología , Prohibitinas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , Metabolismo de los Lípidos/genética , Lipogénesis , Lisosomas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Mitocondrias/ultraestructura , Mitofagia , Esteroles/metabolismo
4.
BMC Biol ; 16(1): 36, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29598825

RESUMEN

BACKGROUND: Advances in automated image-based microscopy platforms coupled with high-throughput liquid workflows have facilitated the design of large-scale screens utilising multicellular model organisms such as Caenorhabditis elegans to identify genetic interactions, therapeutic drugs or disease modifiers. However, the analysis of essential genes has lagged behind because lethal or sterile mutations pose a bottleneck for high-throughput approaches, and a systematic way to analyse genetic interactions of essential genes in multicellular organisms has been lacking. RESULTS: In C. elegans, non-conditional lethal mutations can be maintained in heterozygosity using chromosome balancers, commonly expressing green fluorescent protein (GFP) in the pharynx. However, gene expression or function is typically monitored by the use of fluorescent reporters marked with the same fluorophore, presenting a challenge to sort worm populations of interest, particularly at early larval stages. Here, we develop a sorting strategy capable of selecting homozygous mutants carrying a GFP stress reporter from GFP-balanced animals at the second larval stage. Because sorting is not completely error-free, we develop an automated high-throughput image analysis protocol that identifies and discards animals carrying the chromosome balancer. We demonstrate the experimental usefulness of combining sorting of homozygous lethal mutants and automated image analysis in a functional genomic RNA interference (RNAi) screen for genes that genetically interact with mitochondrial prohibitin (PHB). Lack of PHB results in embryonic lethality, while homozygous PHB deletion mutants develop into sterile adults due to maternal contribution and strongly induce the mitochondrial unfolded protein response (UPRmt). In a chromosome-wide RNAi screen for C. elegans genes having human orthologues, we uncover both known and new PHB genetic interactors affecting the UPRmt and growth. CONCLUSIONS: The method presented here allows the study of balanced lethal mutations in a high-throughput manner. It can be easily adapted depending on the user's requirements and should serve as a useful resource for the C. elegans community for probing new biological aspects of essential nematode genes as well as the generation of more comprehensive genetic networks.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Citometría de Flujo/métodos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mitocondrias/metabolismo , Mutación , Prohibitinas
5.
PLoS One ; 9(9): e107671, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25265021

RESUMEN

Lifespan regulation by mitochondrial proteins has been well described, however, the mechanism of this regulation is not fully understood. Amongst the mitochondrial proteins profoundly affecting ageing are prohibitins (PHB-1 and PHB-2). Paradoxically, in C. elegans prohibitin depletion shortens the lifespan of wild type animals while dramatically extending that of metabolically compromised animals, such as daf-2-insulin-receptor mutants. Here we show that amongst the three kinases known to act downstream of daf-2, only loss of function of sgk-1 recapitulates the ageing phenotype observed in daf-2 mutants upon prohibitin depletion. Interestingly, signalling through SGK-1 receives input from an additional pathway, parallel to DAF-2, for the prohibitin-mediated lifespan phenotype. We investigated the effect of prohibitin depletion on the mitochondrial unfolded protein response (UPRmt). Remarkably, the lifespan extension upon prohibitin elimination, of both daf-2 and sgk-1 mutants, is accompanied by suppression of the UPRmt induced by lack of prohibitin. On the contrary, gain of function of SGK-1 results in further shortening of lifespan and a further increase of the UPRmt in prohibitin depleted animals. Moreover, SGK-1 interacts with RICT-1 for the regulation of the UPRmt in a parallel pathway to DAF-2. Interestingly, prohibitin depletion in rict-1 loss of function mutant animals also causes lifespan extension. Finally, we reveal an unprecedented role for mTORC2-SGK-1 in the regulation of mitochodrial homeostasis. Together, these results give further insight into the mechanism of lifespan regulation by mitochondrial function and reveal a cross-talk of mitochondria with two key pathways, Insulin/IGF and mTORC2, for the regulation of ageing and stress response.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Esperanza de Vida , Mitocondrias/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/fisiología , Somatomedinas/metabolismo , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/fisiología , Diana Mecanicista del Complejo 2 de la Rapamicina , Prohibitinas
6.
Biogerontology ; 15(3): 279-88, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24671263

RESUMEN

Nuclear envelope (NE) architecture and aging have been associated since the discovery that certain human progeria diseases are due to perturbations in processing of lamin A protein, generating alterations in NE morphology. However, whether changes in the NE are a causal effect of normal and premature aging is still controversial. Caenorhabditis elegans is a model organism where observations supporting both, dependent and independent roles of nuclear architecture in the aging process, have been reported. We found that the long-lived glp-1 mutant and dietary restriction delayed age-associated nuclear morphology changes. In addition, we observed that the long-lived mutant of the insulin/IGF receptor daf-2 delayed the age-dependent changes of nuclear architecture at 25 °C, as previously described. However, when daf-2 animals were incubated at 20 °C they remained long-lived, but nuclear appearance changed at similar rate as in the wild type. This supports the idea that both phenotypes, longevity and maintenance of nuclear architecture are tightly associated but can be separated and argues that nuclear morphology deterioration is not a cause of the natural aging process.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Núcleo Celular/fisiología , Longevidad/fisiología , Membrana Nuclear/fisiología , Receptor de Insulina/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica/métodos , Núcleo Celular/patología , Longevidad/genética , Mutación , Membrana Nuclear/patología , Fenotipo , Receptor de Insulina/metabolismo
7.
Antioxid Redox Signal ; 20(2): 217-35, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23641861

RESUMEN

AIMS: Cells have developed quality control systems for protection against proteotoxicity. Misfolded and aggregation-prone proteins, which are behind the initiation and progression of many neurodegenerative diseases (ND), are known to challenge the proteostasis network of the cells. We aimed to explore the role of DNJ-27/ERdj5, an endoplasmic reticulum (ER)-resident thioredoxin protein required as a disulfide reductase for the degradation of misfolded proteins, in well-established Caenorhabditis elegans models of Alzheimer, Parkinson and Huntington diseases. RESULTS: We demonstrate that DNJ-27 is an ER luminal protein and that its expression is induced upon ER stress via IRE-1/XBP-1. When dnj-27 expression is downregulated by RNA interference we find an increase in the aggregation and associated pathological phenotypes (paralysis and motility impairment) caused by human ß-amyloid peptide (Aß), α-synuclein (α-syn) and polyglutamine (polyQ) proteins. In turn, DNJ-27 overexpression ameliorates these deleterious phenotypes. Surprisingly, despite being an ER-resident protein, we show that dnj-27 downregulation alters cytoplasmic protein homeostasis and causes mitochondrial fragmentation. We further demonstrate that DNJ-27 overexpression substantially protects against the mitochondrial fragmentation caused by human Aß and α-syn peptides in these worm models. INNOVATION: We identify C. elegans dnj-27 as a novel protective gene for the toxicity associated with the expression of human Aß, α-syn and polyQ proteins, implying a protective role of ERdj5 in Alzheimer, Parkinson and Huntington diseases. CONCLUSION: Our data support a scenario where the levels of DNJ-27/ERdj5 in the ER impact cytoplasmic protein homeostasis and the integrity of the mitochondrial network which might underlie its protective effects in models of proteotoxicity associated to human ND.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas del Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Enfermedades Neurodegenerativas/genética , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Autofagia/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Degradación Asociada con el Retículo Endoplásmico , Expresión Génica , Regulación de la Expresión Génica , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Péptidos/metabolismo , Fenotipo , Complejo de la Endopetidasa Proteasomal , Proteolisis , Interferencia de ARN , alfa-Sinucleína/metabolismo
8.
J Ind Microbiol Biotechnol ; 40(6): 613-23, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23546810

RESUMEN

Several indigenous Saccharomyces strains from musts were isolated in the Jerez de la Frontera region, at the end of spontaneous fermentation, in order to select the most suitable autochthonous yeast starter, during the 2007 vintage. Five strains were chosen for their oenological abilities and fermentative kinetics to elaborate a Sherry base wine. The selected autochthonous strains were characterized by molecular methods: electrophoretic karyotype and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and by physiological parameters: fermentative power, ethanol production, sugar consumption, acidity and volatile compound production, sensory quality, killer phenotype, desiccation, and sulphur dioxide tolerance. Laboratory- and pilot-scale fermentations were conducted with those autochthonous strains. One of them, named J4, was finally selected over all others for industrial fermentations. The J4 strain, which possesses exceptional fermentative properties and oenological qualities, prevails in industrial fermentations, and becomes the principal biological agent responsible for winemaking. Sherry base wine, industrially manufactured by means of the J4 strain, was analyzed, yielding, together with its sensory qualities, final average values of 0.9 g/l sugar content, 13.4 % (v/v) ethanol content and 0.26 g/l volatile acidity content; apart from a high acetaldehyde production, responsible for the distinctive aroma of "Fino". This base wine was selected for "Fino" Sherry elaboration and so it was fortified; it is at present being subjected to biological aging by the so-called "flor" yeasts. The "flor" velum formed so far is very high quality. To the best of our knowledge, this is the first study covering from laboratory to industrial scale of characterization and selection of autochthonous starter intended for alcoholic fermentation in Sherry base wines. Since the 2010 vintage, the indigenous J4 strain is employed to industrially manufacture a homogeneous, exceptional Sherry base wine for "Fino" Sherry production.


Asunto(s)
Etanol/metabolismo , Fermentación , Industria de Alimentos/métodos , Saccharomyces/aislamiento & purificación , Saccharomyces/metabolismo , Vino/análisis , Acetaldehído/metabolismo , Biotecnología/métodos , Metabolismo de los Hidratos de Carbono , Concentración de Iones de Hidrógeno , Proyectos Piloto , Técnica del ADN Polimorfo Amplificado Aleatorio , Saccharomyces/clasificación , Saccharomyces/genética , Factores de Tiempo , Vino/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...