Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1705: 464216, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37480726

RESUMEN

A micro-solid phase extraction (micro-SPE) device packed with a C18 sorbent (10 mg) has been developed for the enrichment and purification of organic water pollutants prior to their analysis using a portable liquid chromatograph with a dual UV detector. To this end, the sorbent was immobilized at the inlet of a 4 mm syringe filter (0.20 µm), which was modified to reduce its internal volume. The filter was coupled to the needle of the chromatograph. After loading the sample and cleaning the sorbent for analyte purification, the device was installed into the injection port of the chromatograph, and the target compounds were desorbed and transferred directly to the chromatographic column with a small volume of organic solvent. Under optimized conditions, sample volumes as large as 50 mL could be processed with the micro-SPE device, while the analytes were desorbed with only 60 µL of methanol. As a result, efficient preconcentration could be reached, as demonstrated for different water contaminants, namely aclonifen, bifenox, tritosulfuron, triflusulfuron-methyl and caffeine. The proposed micro-SPE device was applied to the analysis of different types of water (river, well, sea, ditch and wastewater). The recoveries of the target compounds in samples ranged from 76 % to 109 %, which allowed their detection at low to sub µg/L levels. All operations were carried out manually, and thus, no additional laboratory instruments such as centrifuges, stirrers or evaporators were required. This proof-of-concept study shows that the proposed micro-SPE approach can be considered a reliable and effective option for the on-site analysis of pollutants in environmental water samples by portable liquid chromatography.


Asunto(s)
Extracción en Fase Sólida , Contaminantes Químicos del Agua , Extracción en Fase Sólida/métodos , Cromatografía Liquida , Agua/química , Solventes/análisis , Cromatografía Líquida de Alta Presión/métodos , Contaminantes Químicos del Agua/análisis
2.
Chemosphere ; 336: 139238, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37330060

RESUMEN

The degradation of the diphenyl-ether herbicides aclonifen (ACL) and bifenox (BF) in water samples has been studied under different laboratory conditions, using in-tube solid-phase microextraction (IT-SPME) coupled to capillary liquid chromatography (capLC). The working conditions were selected in order to detect also bifenox acid (BFA), a compound formed as a result of the hydroxylation of BF. Samples (4 mL) were processed without any previous treatment, which allowed the detection of the herbicides at low ppt levels. The effects of temperature, light and pH on the degradation of ACL and BF have been tested using standard solutions prepared in nanopure water. The effect of the sample matrix has been evaluated by analysing different environmental waters spiked with the herbicides, namely ditch water, river water and seawater. The kinetics of the degradation have been studied and the half-life times (t1/2) have been calculated. The results obtained have demonstrated that the sample matrix is the most important parameter affecting the degradation of the tested herbicides. The degradation of both ACL and BF was much faster in ditch and river water samples, where t1/2 values of only a few days were observed. However, both compounds showed a better stability in seawater samples, where they can persist for several months. In all matrices ACL was found to be more stable than BF. In samples where BF had been substantially degraded, BFA was also detected, although the stability of this compound was also limited. Other degradation products have been detected along the study.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Herbicidas/química , Éteres Fenílicos/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA