Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 14(3): e0018223, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37042671

RESUMEN

Spore-forming bacteria are prevalent in mammalian guts and have implications for host health and nutrition. The production of dormant spores is thought to play an important role in the colonization, persistence, and transmission of these bacteria. Spore formation also modifies interactions among microorganisms such as infection by phages. Recent studies suggest that phages may counter dormancy-mediated defense through the expression of phage-carried sporulation genes during infection, which can alter the transitions between active and inactive states. By mining genomes and gut-derived metagenomes, we identified sporulation genes that are preferentially carried by phages that infect spore-forming bacteria. These included genes involved in chromosome partitioning, DNA damage repair, and cell wall-associated functions. In addition, phages contained homologs of sporulation-specific transcription factors, notably spo0A, the master regulator of sporulation, which could allow phages to control the complex genetic network responsible for spore development. Our findings suggest that phages could influence the formation of bacterial spores with implications for the health of the human gut microbiome, as well as bacterial communities in other environments. IMPORTANCE Phages acquire bacterial genes and use them to alter host metabolism in ways that enhance phage fitness. To date, most auxiliary genes replace or modulate enzymes that are used by the host for nutrition or energy production. However, phage fitness is affected by all aspects of host physiology, including decisions that reduce the metabolic activity of the cell. Here, we focus on endosporulation, a complex and ancient form of dormancy found among the Bacillota that involves hundreds of genes. By coupling homology searches with host classification, we identified 31 phage-carried homologs of sporulation genes that are mostly limited to phages infecting spore-forming bacteria. Nearly one-third of the homologs recovered were regulatory genes, suggesting that phages may manipulate host genetic networks by tapping into their control elements. Our findings also suggest a mechanism by which phages can overcome the defensive strategy of dormancy, which may be involved in coevolutionary dynamics of spore-forming bacteria.


Asunto(s)
Bacteriófagos , Animales , Humanos , Bacteriófagos/genética , Redes Reguladoras de Genes , Bacterias/genética , Esporas Bacterianas , Factores de Transcripción/genética , Mamíferos/genética
2.
mSystems ; 7(4): e0051622, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35861508

RESUMEN

Rivers have a significant role in global carbon and nitrogen cycles, serving as a nexus for nutrient transport between terrestrial and marine ecosystems. Although rivers have a small global surface area, they contribute substantially to worldwide greenhouse gas emissions through microbially mediated processes within the river hyporheic zone. Despite this importance, research linking microbial and viral communities to specific biogeochemical reactions is still nascent in these sediment environments. To survey the metabolic potential and gene expression underpinning carbon and nitrogen biogeochemical cycling in river sediments, we collected an integrated data set of 33 metagenomes, metaproteomes, and paired metabolomes. We reconstructed over 500 microbial metagenome-assembled genomes (MAGs), which we dereplicated into 55 unique, nearly complete medium- and high-quality MAGs spanning 12 bacterial and archaeal phyla. We also reconstructed 2,482 viral genomic contigs, which were dereplicated into 111 viral MAGs (vMAGs) of >10 kb in size. As a result of integrating gene expression data with geochemical and metabolite data, we created a conceptual model that uncovered new roles for microorganisms in organic matter decomposition, carbon sequestration, nitrogen mineralization, nitrification, and denitrification. We show how these metabolic pathways, integrated through shared resource pools of ammonium, carbon dioxide, and inorganic nitrogen, could ultimately contribute to carbon dioxide and nitrous oxide fluxes from hyporheic sediments. Further, by linking viral MAGs to these active microbial hosts, we provide some of the first insights into viral modulation of river sediment carbon and nitrogen cycling. IMPORTANCE Here we created HUM-V (hyporheic uncultured microbial and viral), an annotated microbial and viral MAG catalog that captures strain and functional diversity encoded in these Columbia River sediment samples. Demonstrating its utility, this genomic inventory encompasses multiple representatives of dominant microbial and archaeal phyla reported in other river sediments and provides novel viral MAGs that can putatively infect these. Furthermore, we used HUM-V to recruit gene expression data to decipher the functional activities of these MAGs and reconstruct their active roles in Columbia River sediment biogeochemical cycling. Ultimately, we show the power of MAG-resolved multi-omics to uncover interactions and chemical handoffs in river sediments that shape an intertwined carbon and nitrogen metabolic network. The accessible microbial and viral MAGs in HUM-V will serve as a community resource to further advance more untargeted, activity-based measurements in these, and related, freshwater terrestrial-aquatic ecosystems.


Asunto(s)
Ecosistema , Ríos , Dióxido de Carbono/metabolismo , Archaea/genética , Ciclo del Nitrógeno , Nitrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...