Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurochem Res ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551797

RESUMEN

Lactate has received attention as a potential therapeutic intervention for brain diseases, particularly those including energy deficit, exacerbated inflammation, and disrupted redox status, such as cerebral ischemia. However, lactate roles in metabolic or signaling pathways in neural cells remain elusive in the hypoxic and ischemic contexts. Here, we tested the effects of lactate on the survival of a microglial (BV-2) and a neuronal (SH-SY5Y) cell lines during oxygen and glucose deprivation (OGD) or OGD followed by reoxygenation (OGD/R). Lactate signaling was studied by using 3,5-DHBA, an exogenous agonist of lactate receptor GPR81. Inhibition of lactate dehydrogenase (LDH) or monocarboxylate transporters (MCT), using oxamate or 4-CIN, respectively, was performed to evaluate the impact of lactate metabolization and transport on cell viability. The OGD lasted 6 h and the reoxygenation lasted 24 h following OGD (OGD/R). Cell viability, extracellular lactate concentrations, microglial intracellular pH and TNF-ɑ release, and neurite elongation were evaluated. Lactate or 3,5-DHBA treatment during OGD increased microglial survival during reoxygenation. Inhibition of lactate metabolism and transport impaired microglial and neuronal viability. OGD led to intracellular acidification in BV-2 cells, and reoxygenation increased the release of TNF-ɑ, which was reverted by lactate and 3,5-DHBA treatment. Our results suggest that lactate plays a dual role in OGD, acting as a metabolic and a signaling molecule in BV-2 and SH-SY5Y cells. Lactate metabolism and transport are vital for cell survival during OGD. Moreover, lactate treatment and GPR81 activation during OGD promote long-term adaptations that potentially protect cells against secondary cell death during reoxygenation.

2.
Nutr Neurosci ; 27(2): 172-183, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36657165

RESUMEN

ABSTRACTObjetives: Omega-3 (n3) fatty acids have been studied as an option to alleviate the harmful effects of obesity. However, its role in obesity-related behavioral changes is still controversial. This study aimed to evaluate the effects of n3 on behavior and neuroinflammation in obese animals. Methods: Male Wistar rats were divided into four groups: control diet (CT), CT+n3, cafeteria diet (CAF), and CAF+n3. Diet was administered for 13 weeks, and n3 was supplemented during the last 5 weeks. Metabolic and biochemical parameters were evaluated, as well as anxiety-like behaviors. Immunoblots were conducted in the animals' cerebral cortex and hippocampus to assess changes in neuroinflammatory markers.Results: CAF-fed animals showed higher weight gain, visceral adiposity, fasting glucose, total cholesterol, triglycerides, and insulin levels, and n3 improved the lipid profile and restored insulin sensitivity. CAF-fed rats showed anxiety-like behaviors in the open field and light-dark box tasks but not in the contextual aversive conditioning. Omega-3 did not exert any effect on these behaviors. Regarding neuroinflammation, diet and supplementation acted in a region-specific manner. In the hippocampus, CAF reduced claudin-5 expression with no effect of n3, indicating a brain-blood barrier disruption following CAF. Furthermore, in the hippocampus, the glial fibrillary acidic protein (GFAP) and toll-like receptor 4 (TLR-4) were reduced in treated obese animals. However, n3 could not reverse the TLR-4 expression increase in the cerebral cortex.Discussion: Although n3 may protect against some neuroinflammatory manifestations in the hippocampus, it does not seem sufficient to reverse the increase in anxiolytic manifestations caused by CAF.


Asunto(s)
Ácidos Grasos Omega-3 , Receptor Toll-Like 4 , Ratas , Masculino , Animales , Ratas Wistar , Enfermedades Neuroinflamatorias , Obesidad/etiología , Obesidad/metabolismo , Dieta , Ácidos Grasos Omega-3/farmacología , Ansiedad/etiología , Ansiedad/prevención & control , Suplementos Dietéticos
3.
J Nutr Biochem ; 119: 109371, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37169228

RESUMEN

Besides metabolic dysfunctions, elderly individuals with obesity are at special risk of developing cognitive decline and psychiatric disturbances. Restricted calorie consumption could be an efficient strategy to improve metabolic function after obesity. However, its effects on anxiety-like behaviors in aged rats submitted to an obesogenic diet are unknown. For this purpose, 42 Wistar rats (18-months old) were divided into four groups: Control (CT), calorie restriction (CR), cafeteria diet (CAF), and CAF+CR (CAF/CR). CT, CR, and CAF groups received the diets for 8 weeks. CAF/CR group was submitted to the CAF menu for 7 weeks and then switched to a standard diet on a CR regimen, receiving 30% lower calories than consumed by the CT, for another 5 weeks. CAF's menu consisted of ultra-processed foods such as cookies, chocolate, sausage, and bologna. Body weight, visceral adiposity, and biochemical blood analysis were evaluated for obesity diagnosis. The profile of gut microbiota was investigated, along with circulating levels of LPS. Neurochemical parameters, such as neurotransmitter levels, were dosed. Anxiety-like behaviors were accessed using open field (OF) and elevated plus maze (EPM) tests. As expected, CR reduced weight gain and improved glucose homeostasis. Gut microbiome disturbance was found in CAF-fed animals accompanied by increased levels of LPS. However, CR after CAF mitigated several harmful responses. The obesogenic diet triggered anxiety-like manifestations in the OF and EPM tests that were not evidenced in the CAF/CR group. These findings indicate that CR can be a promising strategy for the neurological effects of obesity in aged rats.


Asunto(s)
Restricción Calórica , Lipopolisacáridos , Ratas , Masculino , Animales , Ratas Wistar , Dieta , Obesidad/metabolismo
4.
Front Nutr ; 10: 1150189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969815

RESUMEN

Introduction: The implications of maternal overnutrition on offspring metabolic and neuroimmune development are well-known. Increasing evidence now suggests that maternal obesity and poor dietary habits during pregnancy and lactation can increase the risk of central and peripheral metabolic dysregulation in the offspring, but the mechanisms are not sufficiently established. Furthermore, despite many studies addressing preventive measures targeted at the mother, very few propose practical approaches to treat the damages when they are already installed. Methods: Here we investigated the potential of cannabidiol (CBD) treatment to attenuate the effects of maternal obesity induced by a cafeteria diet on hypothalamic inflammation and the peripheral metabolic profile of the offspring in Wistar rats. Results: We have observed that maternal obesity induced a range of metabolic imbalances in the offspring in a sex-dependant manner, with higher deposition of visceral white adipose tissue, increased plasma fasting glucose and lipopolysaccharides (LPS) levels in both sexes, but the increase in serum cholesterol and triglycerides only occurred in females, while the increase in plasma insulin and the homeostatic model assessment index (HOMA-IR) was only observed in male offspring. We also found an overexpression of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα), interleukin (IL) 6, and interleukin (IL) 1ß in the hypothalamus, a trademark of neuroinflammation. Interestingly, the expression of GFAP, a marker for astrogliosis, was reduced in the offspring of obese mothers, indicating an adaptive mechanism to in utero neuroinflammation. Treatment with 50 mg/kg CBD oil by oral gavage was able to reduce white adipose tissue and revert insulin resistance in males, reduce plasma triglycerides in females, and attenuate plasma LPS levels and overexpression of TNFα and IL6 in the hypothalamus of both sexes. Discussion: Together, these results indicate an intricate interplay between peripheral and central counterparts in both the pathogenicity of maternal obesity and the therapeutic effects of CBD. In this context, the impairment of internal hypothalamic circuitry caused by neuroinflammation runs in tandem with the disruptions of important metabolic processes, which can be attenuated by CBD treatment in both ends.

5.
Nutrients ; 14(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235574

RESUMEN

Zinc (Zn) plays an important role in metabolic homeostasis and may modulate neurological impairment related to obesity. The present study aimed to evaluate the effect of Zn supplementation on the intestinal microbiota, fatty acid profile, and neurofunctional parameters in obese male Wistar rats. Rats were fed a cafeteria diet (CAF), composed of ultra-processed and highly caloric and palatable foods, for 20 weeks to induce obesity. From week 16, Zn supplementation was started (10 mg/kg/day). At the end of the experiment, we evaluated the colon morphology, composition of gut microbiota, intestinal fatty acids, integrity of the intestinal barrier and blood-brain barrier (BBB), and neuroplasticity markers in the cerebral cortex and hippocampus. Obese rats showed dysbiosis, morphological changes, short-chain fatty acid (SCFA) reduction, and increased saturated fatty acids in the colon. BBB may also be compromised in CAF-fed animals, as claudin-5 expression is reduced in the cerebral cortex. In addition, synaptophysin was decreased in the hippocampus, which may affect synaptic function. Our findings showed that Zn could not protect obese animals from intestinal dysbiosis. However, an increase in acetate levels was observed, which suggests a partial beneficial effect of Zn. Thus, Zn supplementation may not be sufficient to protect from obesity-related dysfunctions.


Asunto(s)
Dieta Alta en Grasa , Disbiosis , Animales , Claudina-5 , Suplementos Dietéticos , Ácidos Grasos Volátiles , Masculino , Obesidad/etiología , Obesidad/metabolismo , Obesidad/prevención & control , Ratas , Ratas Wistar , Sinaptofisina , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...