Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 77(9): 2181-2191, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32444906

RESUMEN

Essential oils are potential antimicrobial agents and can be used as active ingredients in the pharmaceutical, food and cosmetics industries. This work intends to evaluate the antibacterial activity and design a strategy for the proposition of the mechanism of action of Melaleuca leucadendra essential oil. Optimum concentration of the bacteria and the phase where they had the highest pathogenic activity were determined. Results show that for each microorganism it is necessary to use a different concentration at the time of adjusting the initial inoculum, and that the time to achieve exponential growth phase varies from one to the other. M. leucadendra essential oil demonstrated in vitro antimicrobial properties. This oil was chemically characterized and the main compounds were evaluated by their mechanism of antibacterial action based on structure-activity analysis. The mechanism is related to the increase of bacteria cell membrane permeability. This indication was confirmed by flow cytometry and transmission electronic microscopy. Thus, in silico analysis is an important tool in the search for new antimicrobial agents and these results showed that M. leucadendra essential oil may be useful on the development of new chemotherapies or food preservation systems.


Asunto(s)
Antiinfecciosos , Melaleuca , Aceites Volátiles , Antibacterianos/farmacología , Membrana Celular , Simulación por Computador , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología
2.
J Nat Prod ; 82(12): 3208-3220, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31815454

RESUMEN

The physicochemical characteristics of nanostructured suspensions are important prerequisites for the success of new drug development. This work aimed to develop nanometric systems containing Cymbopogon densiflorus leaf essential oil and to evaluate their antimicrobial activity. The essential oil was isolated by hydrodistillation from leaves and analyzed by GC-MS. The main constituents were found to be trans-p-mentha-2,8-dien-1-ol, cis-p-mentha-2,8-dien-1-ol, trans-p-mentha-1(7),8-dien-2-ol, cis-piperitol, and cis-p-mentha-1(7),8-dien-2-ol. In silico prediction analysis suggested that this oil possesses antimicrobial potential and the main mechanism of action might be the peptidoglycan glycosyltransferase inhibition. Nanoemulsions were prepared by the phase inversion method, and liposomes were made by the film hydration method. Qualitative evaluation of the antimicrobial activity was performed by the diffusion disk assay with 24 microorganisms; all of them were found to be sensitive to the essential oil. Subsequently, this property was quantified by the serial microdilution technique, where the nanoformulations demonstrated improved activity in comparison with the free oil. Bactericidal action was tested by the propidium iodide method, which revealed that free essential oil and nanoemulsion increased cytoplasmic membrane permeability, while no difference was observed between negative control and liposome. These results were confirmed by images obtained using transmission electron microscopy. This study has shown an optimization in the antimicrobial activity of C. densiflorus essential oil by a nanoemulsion and a liposomal formulation of the active substances.


Asunto(s)
Antiinfecciosos/farmacología , Cymbopogon/química , Nanoestructuras , Aceites Volátiles/farmacología , Hojas de la Planta/química , Animales , Antiinfecciosos/química , Bacterias/efectos de los fármacos , Línea Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Hongos/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Concentración de Iones de Hidrógeno , Ratones , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Aceites Volátiles/química , Tamaño de la Partícula , Relación Estructura-Actividad Cuantitativa
3.
Front Microbiol ; 10: 3114, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32117083

RESUMEN

Cryptococcus species are responsible for important systemic mycosis and are estimated to cause millions of new cases annually. The available therapy is limited due to the high toxicity and the increasing rates of yeast resistance to antifungal drugs. Popularly known as "sucará," Xylosma prockia (Turcz.) Turcz. (Salicaceae) is a native plant from Brazil with little information on its pharmacological potential. In this work, we evaluated in vitro anticryptococcal effects of the leaf ethanolic extract of X. prockia and its fractions against Cryptococcus gattii and Cryptococcus neoformans. We also evaluated phenotypic alterations caused by ethyl acetate fraction (EAF) (chosen according to its biological results). The liquid chromatography-mass spectrometry (LC-MS) analysis of EAF demonstrated the presence of phenolic metabolites that belong to three structurally related groups as majority compounds: caffeoylquinic acid, coumaroyl-glucoside, and caffeoyl-glucoside/deoxyhexosyl-caffeoyl glucoside derivatives. The minimum inhibitory concentration (MIC) values against C. gattii and C. neoformans ranged from 8 to 64 mg/L and from 0.5 to 8 mg/L, for ethanolic extract and EAF, respectively. The EAF triggered an oxidative burst and promoted lipid peroxidation. EAF also induced a reduction of ergosterol content in the pathogen cell membrane. These effects were not associated with alterations in the cell surface charge or in the thermodynamic fingerprint of the molecular interaction between EAF and the yeasts evaluated. Cytotoxic experiments with peripheral blood mononuclear cells (PBMCs) demonstrated that EAF was more selective for yeasts than was PBMCs. The results may provide evidence that X. prockia leaf extract might indeed be a potential source of antifungal agents.

4.
Curr Pharm Biotechnol ; 14(15): 1235-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25106650

RESUMEN

The triterpenes α- and ß-amyrins display important pharmacological activities. As a result of their high hydrophobia, they present low water solubility and reflect poor oral bioavailability. Different techniques can be used for the improvement of amyrins solubility, one of them is the use of nanoemulsions. Therefore, the method of direct emulsification was used to develop a nanoemulsion of these triterpenes and the resulting drug delivery system was characterized by an in vitro release assay. Encapsulation efficiency higher than 99% was achieved with total release around 30% in 24 h, which suggests that this system could be useful for the administration of α- and ß-amyrins by different routes in an efficient way.


Asunto(s)
Nanopartículas/química , Ácido Oleanólico/análogos & derivados , Composición de Medicamentos , Liberación de Fármacos , Emulsiones , Ácido Oleanólico/química , Tamaño de la Partícula , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...