Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123837

RESUMEN

Node localization is critical for accessing diverse nodes that provide services in remote places. Single-anchor localization techniques suffer co-linearity, performing poorly. The reliable multiple anchor node selection method is computationally intensive and requires a lot of processing power and time to identify suitable anchor nodes. Node localization in wireless sensor networks (WSNs) is challenging due to the number and placement of anchors, as well as their communication capabilities. These senor nodes possess limited energy resources, which is a big concern in localization. In addition to convention optimization in WSNs, researchers have employed nature-inspired algorithms to localize unknown nodes in WSN. However, these methods take longer, require lots of processing power, and have higher localization error, with a greater number of beacon nodes and sensitivity to parameter selection affecting localization. This research employed a nature-inspired crow search algorithm (an improvement over other nature-inspired algorithms) for selecting the suitable number of anchor nodes from the population, reducing errors in localizing unknown nodes. Additionally, the weighted centroid method was proposed for identifying the exact location of an unknown node. This made the crow search weighted centroid localization (CS-WCL) algorithm a more trustworthy and efficient method for node localization in WSNs, with reduced average localization error (ALE) and energy consumption. CS-WCL outperformed WCL and distance vector (DV)-Hop, with a reduced ALE of 15% (from 32%) and varying communication radii from 20 m to 45 m. Also, the ALE against scalability was validated for CS-WCL against WCL and DV-Hop for a varying number of beacon nodes (from 3 to 2), reducing ALE to 2.59% (from 28.75%). Lastly, CS-WCL resulted in reduced energy consumption (from 120 mJ to 45 mJ) for varying network nodes from 30 to 300 against WCL and DV-Hop. Thus, CS-WCL outperformed other nature-inspired algorithms in node localization. These have been validated using MATLAB 2022b.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39063477

RESUMEN

Spinal cord injury (SCI) is a condition that significantly affects the quality of life (QoL) of individuals, causing motor, physiological, social, and psychological impairments. Physical exercise plays a crucial role in maintaining the health and functional capacity of these individuals, helping to minimize the negative impacts of SCI. The aim of this study was to evaluate the effect of detraining (DT) (reduction or cessation of physical exercise) during the pandemic on five individuals with thoracic SCI. We assessed muscle strength using strength tests, functional capacity using a functional agility test, mental health using anxiety and depression inventories, and body composition using dual-energy X-ray absorptiometry (DEXA). The results after 33 months of DT showed significant losses in functional agility and MS, as well as a worsening in symptoms of anxiety and depression. It was observed that total body mass and fat mass (FM) exhibited varied behaviors among the individuals. Similarly, the results for lean body mass were heterogeneous, with one participant showing significant deterioration. It is concluded that DT caused by the pandemic worsened the physical and mental condition of individuals with SCI, highlighting the importance of continuous exercise for this population and underscoring the need for individual assessments to fully understand the impacts of DT.


Asunto(s)
Composición Corporal , Salud Mental , Fuerza Muscular , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/psicología , Masculino , Adulto , Persona de Mediana Edad , Femenino , COVID-19/psicología , Ejercicio Físico , Calidad de Vida , Ansiedad/fisiopatología , Depresión/fisiopatología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38923476

RESUMEN

In recent times, there has been a notable rise in the utilization of Internet of Medical Things (IoMT) frameworks particularly those based on edge computing, to enhance remote monitoring in healthcare applications. Most existing models in this field have been developed temperature screening methods using RCNN, face temperature encoder (FTE), and a combination of data from wearable sensors for predicting respiratory rate (RR) and monitoring blood pressure. These methods aim to facilitate remote screening and monitoring of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and COVID-19. However, these models require inadequate computing resources and are not suitable for lightweight environments. We propose a multimodal screening framework that leverages deep learning-inspired data fusion models to enhance screening results. A Variation Encoder (VEN) design proposes to measure skin temperature using Regions of Interest (RoI) identified by YoLo. Subsequently, the multi-data fusion model integrates electronic records features with data from wearable human sensors. To optimize computational efficiency, a data reduction mechanism is added to eliminate unnecessary features. Furthermore, we employ a contingent probability method to estimate distinct feature weights for each cluster, deepening our understanding of variations in thermal and sensory data to assess the prediction of abnormal COVID-19 instances. Simulation results using our lab dataset demonstrate a precision of 95.2%, surpassing state-of-the-art models due to the thoughtful design of the multimodal data-based feature fusion model, weight prediction factor, and feature selection model.

4.
Sensors (Basel) ; 24(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38475015

RESUMEN

Respiratory diseases are among the leading causes of death globally, with the COVID-19 pandemic serving as a prominent example. Issues such as infections affect a large population and, depending on the mode of transmission, can rapidly spread worldwide, impacting thousands of individuals. These diseases manifest in mild and severe forms, with severely affected patients requiring ventilatory support. The air-oxygen blender is a critical component of mechanical ventilators, responsible for mixing air and oxygen in precise proportions to ensure a constant supply. The most commonly used version of this equipment is the analog model, which faces several challenges. These include a lack of precision in adjustments and the inspiratory fraction of oxygen, as well as gas wastage from cylinders as pressure decreases. The research proposes a blender model utilizing only dynamic pressure sensors to calculate oxygen saturation, based on Bernoulli's equation. The model underwent validation through simulation, revealing a linear relationship between pressures and oxygen saturation up to a mixture outlet pressure of 500 cmH2O. Beyond this value, the relationship begins to exhibit non-linearities. However, these non-linearities can be mitigated through a calibration algorithm that adjusts the mathematical model. This research represents a relevant advancement in the field, addressing the scarcity of work focused on this essential equipment crucial for saving lives.


Asunto(s)
Oxígeno , Pandemias , Humanos , Ventiladores Mecánicos , Presión , Calibración
5.
J Adv Res ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37777064

RESUMEN

INTRODUCTION: The Industrial Internet of Things (IIoT) is a technology that connects devices to collect data and conduct in-depth analysis to provide value-added services to industries. The integration of the physical and digital domains is crucial for unlocking the full potential of the IIoT, and digital twins can facilitate this integration by providing a virtual representation of real-world entities. OBJECTIVES: By combining digital twins with the IIoT, industries can simulate, predict, and control physical behaviors, enabling them to achieve broader value and support industry 4.0 and 5.0. Constituents of cooperative IIoT domains tend to interact and collaborate during their complicated operations. METHODS: To secure such interaction and collaborations, we introduce a blockchain-based cross-domain authentication protocol for IIoT. The blockchain maintains only each domain's dynamic accumulator, which accumulates crucial materials derived from devices, decreasing the overhead. In addition, we use the on-chain accumulator to effectively validate the unlinkable identities of cross-domain IIoT devices. RESULTS: The implementation of the concept reveals the fact that our protocol is efficient and reliable. This efficiency and reliability of our protocol is also substantiated through comparison with state-of-the-art literature. In contrast to related protocols, our protocol exhibits a minimum 22.67% increase in computation cost efficiency and a 16.35% rise in communication cost efficiency. CONCLUSION: The developed protocol guarantees data transfer security across the domain and thwarts IoT devices from potential physical attacks. Additionally, in order to protect privacy, anonymity and unlinkability are also guaranteed.

6.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080971

RESUMEN

The correlations between smartphone sensors, algorithms, and relevant techniques are major components facilitating indoor localization and tracking in the absence of communication and localization standards. A major research gap can be noted in terms of explaining the connections between these components to clarify the impacts and issues of models meant for indoor localization and tracking. In this paper, we comprehensively study the smartphone sensors, algorithms, and techniques that can support indoor localization and tracking without the need for any additional hardware or specific infrastructure. Reviews and comparisons detail the strengths and limitations of each component, following which we propose a handheld-device-based indoor localization with zero infrastructure (HDIZI) approach to connect the abovementioned components in a balanced manner. The sensors are the input source, while the algorithms are used as engines in an optimal manner, in order to produce a robust localizing and tracking model without requiring any further infrastructure. The proposed framework makes indoor and outdoor navigation more user-friendly, and is cost-effective for researchers working with embedded sensors in handheld devices, enabling technologies for Industry 4.0 and beyond. We conducted experiments using data collected from two different sites with five smartphones as an initial work. The data were sampled at 10 Hz for a duration of five seconds at fixed locations; furthermore, data were also collected while moving, allowing for analysis based on user stepping behavior and speed across multiple paths. We leveraged the capabilities of smartphones, through efficient implementation and the optimal integration of algorithms, in order to overcome the inherent limitations. Hence, the proposed HDIZI is expected to outperform approaches proposed in previous studies, helping researchers to deal with sensors for the purposes of indoor navigation-in terms of either positioning or tracking-for use in various fields, such as healthcare, transportation, environmental monitoring, or disaster situations.


Asunto(s)
Algoritmos , Teléfono Inteligente , Computadores , Transportes
7.
Neurotox Res ; 40(5): 1539-1552, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35781222

RESUMEN

Pesticides have been used in agriculture, public health programs, and pharmaceuticals for many decades. Though pesticides primarily target pests by affecting their nervous system and causing other lethal effects, these chemical entities also exert toxic effects in inadvertently exposed humans through inhalation or ingestion. Mounting pieces of evidence from cellular, animal, and clinical studies indicate that pesticide-exposed models display metabolite alterations of pathways involved in neurodegenerative diseases. Hence, identifying common key metabolites/metabolic pathways between pesticide-induced metabolic reprogramming and neurodegenerative diseases is necessary to understand the etiology of pesticides in the rise of neurodegenerative disorders. The present review provides an overview of specific metabolic pathways, including tryptophan metabolism, glutathione metabolism, dopamine metabolism, energy metabolism, mitochondrial dysfunction, fatty acids, and lipid metabolism that are specifically altered in response to pesticides. Furthermore, we discuss how these metabolite alterations are linked to the pathogenesis of neurodegenerative diseases and to identify novel biomarkers for targeted therapeutic approaches.


Asunto(s)
Enfermedades Neurodegenerativas , Plaguicidas , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Dopamina , Ácidos Grasos , Glutatión/metabolismo , Humanos , Metaboloma , Enfermedades Neurodegenerativas/inducido químicamente , Plaguicidas/toxicidad , Triptófano/metabolismo
9.
Sensors (Basel) ; 22(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35336353

RESUMEN

Respiratory diseases are one of the most common causes of death in the world and this recent COVID-19 pandemic is a key example. Problems such as infections, in general, affect many people and depending on the form of transmission they can spread throughout the world and weaken thousands of people. Two examples are severe acute respiratory syndrome and the recent coronavirus disease. These diseases have mild and severe forms, in which patients gravely affected need ventilatory support. The equipment that serves as a basis for operation of the mechanical ventilator is the air-oxygen blender, responsible for carrying out the air-oxygen mixture in the proper proportions ensuring constant supply. New blender models are described in the literature together with applications of control techniques, such as Proportional, Integrative and Derivative (PID); Fuzzy; and Adaptive. The results obtained from the literature show a significant improvement in patient care when using automatic controls instead of manual adjustment, increasing the safety and accuracy of the treatment. This study presents a deep review of the state of the art in air-oxygen benders, identifies the most relevant characteristics, performs a comparison study considering the most relevant available solutions, and identifies open research directions in the topic.


Asunto(s)
COVID-19 , Oxígeno , COVID-19/terapia , Humanos , Oxígeno/uso terapéutico , Pandemias , Ventiladores Mecánicos
10.
Int. j. cardiovasc. sci. (Impr.) ; 35(2): 161-171, Mar.-Apr. 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1364975

RESUMEN

Abstract Background: There are divergences in the literature regarding the experimental model (Wistar-WIS or Wistar Kyoto-WKY) to be used as a Spontaneously Hypertensive Rat (SHR) control. The characterization of these models in terms of cardiovascular parameters provides researchers with important tools at the time of selection and application in scientific research. Objective: The aim of this study was to evaluate the use of WIS and WKY as a Spontaneously Hypertensive Rat (SHR) control by assessing the long-term behavior of blood pressure and cardiac structure and function in these strains. Methods: To this end, WIS, WKY, and SHR underwent longitudinal experiments. Blood pressure and body mass were measured every two weeks from the 8th to the 72nd. Echocardiographic analysis was performed in all groups with 16, 48, and 72 weeks of life. After having applied the normality test, the Two-Way ANOVA of repeated measures followed by the Tukey post hoc test was used. A significance level of 5% was established. Results: The WIS group showed higher body mass (p<0.05), while the WKY and SHR presented higher body mass variation over time (p<0.05). SHR exhibited increased values of systolic, diastolic, and mean blood pressure when compared to WKY and WIS, whereas the WKY generally showed higher values than WIS (p<0.05). Regarding the cardiac function, SHR showed reduced values, while the WKY presented an early decrease when compared to WIS with aging (p<0.05). Conclusion: WIS is a more suitable normotensive control for SHR than WKY in experiments to test blood pressure and cardiac structure and function.


Asunto(s)
Animales , Masculino , Ratas , Presión Arterial/fisiología , Corazón/anatomía & histología , Corazón/fisiología , Hipertensión/fisiopatología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Peso Corporal , Ecocardiografía , Estudios Longitudinales , Ratas Wistar , Modelos Animales de Enfermedad
11.
J Med Internet Res ; 24(2): e28735, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35175202

RESUMEN

BACKGROUND: Mental disorders are normally diagnosed exclusively on the basis of symptoms, which are identified from patients' interviews and self-reported experiences. To make mental health diagnoses and monitoring more objective, different solutions have been proposed such as digital phenotyping of mental health (DPMH), which can expand the ability to identify and monitor health conditions based on the interactions of people with digital technologies. OBJECTIVE: This article aims to identify and characterize the sensing applications and public data sets for DPMH from a technical perspective. METHODS: We performed a systematic review of scientific literature and data sets. We searched 8 digital libraries and 20 data set repositories to find results that met the selection criteria. We conducted a data extraction process from the selected articles and data sets. For this purpose, a form was designed to extract relevant information, thus enabling us to answer the research questions and identify open issues and research trends. RESULTS: A total of 31 sensing apps and 8 data sets were identified and reviewed. Sensing apps explore different context data sources (eg, positioning, inertial, ambient) to support DPMH studies. These apps are designed to analyze and process collected data to classify (n=11) and predict (n=6) mental states/disorders, and also to investigate existing correlations between context data and mental states/disorders (n=6). Moreover, general-purpose sensing apps are developed to focus only on contextual data collection (n=9). The reviewed data sets contain context data that model different aspects of human behavior, such as sociability, mood, physical activity, sleep, with some also being multimodal. CONCLUSIONS: This systematic review provides in-depth analysis regarding solutions for DPMH. Results show growth in proposals for DPMH sensing apps in recent years, as opposed to a scarcity of public data sets. The review shows that there are features that can be measured on smart devices that can act as proxies for mental status and well-being; however, it should be noted that the combined evidence for high-quality features for mental states remains limited. DPMH presents a great perspective for future research, mainly to reach the needed maturity for applications in clinical settings.


Asunto(s)
Trastornos Mentales , Aplicaciones Móviles , Humanos , Trastornos Mentales/diagnóstico , Salud Mental
12.
Expert Syst ; 39(3): e12823, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34898799

RESUMEN

Currently, many deep learning models are being used to classify COVID-19 and normal cases from chest X-rays. However, the available data (X-rays) for COVID-19 is limited to train a robust deep-learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high-dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep-convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID-19). To validate whether the generated images are accurate, we used the k-mean clustering technique with three clusters (Normal, Pneumonia, and COVID-19). We only selected the X-ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X-rays, we used the Grad-CAM technique to visualize the underlying pattern, which leads the network to its final decision.

13.
IEEE J Biomed Health Inform ; 26(8): 3607-3617, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34847047

RESUMEN

Affective brain computer interface (ABCI) enables machines to perceive, understand, express and respond to people's emotions. Therefore, it is expected to play an important role in emotional care and mental disorder detection. EEG signals are most frequently adopted as the physiology measurement in ABCI applications. Eye blinking and movements introduce lots of artifacts into raw EEG data, which seriously affect the quality of EEG signal and the subsequent emotional EEG feature engineering and recognition. In this paper, we propose a fully automatic and unsupervised ocular artifact identification and removal algorithm named automated canonical correlation analysis (CCA)-multi-channel wiener filter (MWF) (ACCAMWF). Firstly, spatial distribution entropy (SDE) and spectral entropy (SE) are computed to automatically annotate artifact segments. Then, CCA algorithm is used to extract neural signal from artifact contaminated data to further supplement the clean EEG data. Finally, MWF is trained to remove ocular artifacts from multiple channel EEG data adaptively. Extensive experiments have been carried out on semi-simulated EEG/EOG dataset and real eye blinking-contaminated EEG dataset to verify the effectiveness of our method when compared to two state-of-the-art algorithms. The results clearly demonstrate that ACCAMWF is a promising solution for removing EOG artifacts from emotional EEG data.


Asunto(s)
Artefactos , Interfaces Cerebro-Computador , Algoritmos , Electroencefalografía/métodos , Electrooculografía/métodos , Humanos , Procesamiento de Señales Asistido por Computador
14.
Multimed Syst ; 28(4): 1251-1262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34305327

RESUMEN

Amidst the global pandemic and catastrophe created by 'COVID-19', every research institution and scientist are doing their best efforts to invent or find the vaccine or medicine for the disease. The objective of this research is to design and develop a deep learning-based multi-modal for the screening of COVID-19 using chest radiographs and genomic sequences. The modal is also effective in finding the degree of genomic similarity among the Severe Acute Respiratory Syndrome-Coronavirus 2 and other prevalent viruses such as Severe Acute Respiratory Syndrome-Coronavirus, Middle East Respiratory Syndrome-Coronavirus, Human Immunodeficiency Virus, and Human T-cell Leukaemia Virus. The experimental results on the datasets available at National Centre for Biotechnology Information, GitHub, and Kaggle repositories show that it is successful in detecting the genome of 'SARS-CoV-2' in the host genome with an accuracy of 99.27% and screening of chest radiographs into COVID-19, non-COVID pneumonia and healthy with a sensitivity of 95.47%. Thus, it may prove a useful tool for doctors to quickly classify the infected and non-infected genomes. It can also be useful in finding the most effective drug from the available drugs for the treatment of 'COVID-19'.

15.
Sensors (Basel) ; 21(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34833507

RESUMEN

Effective communication in vehicular networks depends on the scheduling of wireless channel resources. There are two types of channel resource scheduling in Release 14 of the 3GPP, i.e., (1) controlled by eNodeB and (2) a distributed scheduling carried out by every vehicle, known as Autonomous Resource Selection (ARS). The most suitable resource scheduling for vehicle safety applications is the ARS mechanism. ARS includes (a) counter selection (i.e., specifying the number of subsequent transmissions) and (b) resource reselection (specifying the reuse of the same resource after counter expiry). ARS is a decentralized approach for resource selection. Therefore, resource collisions can occur during the initial selection, where multiple vehicles might select the same resource, hence resulting in packet loss. ARS is not adaptive towards vehicle density and employs a uniform random selection probability approach for counter selection and reselection. As a result, it can prevent some vehicles from transmitting in a congested vehicular network. To this end, the paper presents Truly Autonomous Resource Selection (TARS) for vehicular networks. TARS considers resource allocation as a problem of locally detecting the selected resources at neighbor vehicles to avoid resource collisions. The paper also models the behavior of counter selection and resource block reselection on resource collisions using the Discrete Time Markov Chain (DTMC). Observation of the model is used to propose a fair policy of counter selection and resource reselection in ARS. The simulation of the proposed TARS mechanism showed better performance in terms of resource collision probability and the packet delivery ratio when compared with the LTE Mode 4 standard and with a competing approach proposed by Jianhua He et al.


Asunto(s)
Simulación por Computador
16.
Sensors (Basel) ; 21(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34640818

RESUMEN

The aim of this work is to solve the case study singular model involving the Neumann-Robin, Dirichlet, and Neumann boundary conditions using a novel computing framework that is based on the artificial neural network (ANN), global search genetic algorithm (GA), and local search sequential quadratic programming method (SQPM), i.e., ANN-GA-SQPM. The inspiration to present this numerical framework comes through the objective of introducing a reliable structure that associates the operative ANNs features using the optimization procedures of soft computing to deal with such stimulating systems. Four different problems that are based on the singular equations involving Neumann-Robin, Dirichlet, and Neumann boundary conditions have been occupied to scrutinize the robustness, stability, and proficiency of the designed ANN-GA-SQPM. The proposed results through ANN-GA-SQPM have been compared with the exact results to check the efficiency of the scheme through the statistical performances for taking fifty independent trials. Moreover, the study of the neuron analysis based on three and 15 neurons is also performed to check the authenticity of the proposed ANN-GA-SQPM.


Asunto(s)
Algoritmos , Pájaros Cantores , Animales , Redes Neurales de la Computación
17.
Sensors (Basel) ; 21(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34640887

RESUMEN

In this study, the numerical computation heuristic of the environmental and economic system using the artificial neural networks (ANNs) structure together with the capabilities of the heuristic global search genetic algorithm (GA) and the quick local search interior-point algorithm (IPA), i.e., ANN-GA-IPA. The environmental and economic system is dependent of three categories, execution cost of control standards and new technical diagnostics elimination costs of emergencies values and the competence of the system of industrial elements. These three elements form a nonlinear differential environmental and economic system. The optimization of an error-based objective function is performed using the differential environmental and economic system and its initial conditions. The optimization of an error-based objective function is performed using the differential environmental and economic system and its initial conditions.


Asunto(s)
Heurística , Redes Neurales de la Computación , Algoritmos
18.
Sensors (Basel) ; 21(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34372449

RESUMEN

Wireless Sensor Networks (WSNs) have gained great significance from researchers and industry due to their wide applications. Energy and resource conservation challenges are facing the WSNs. Nevertheless, clustering techniques offer many solutions to address the WSN issues, such as energy efficiency, service redundancy, routing delay, scalability, and making WSNs more efficient. Unfortunately, the WSNs are still immature, and suffering in several aspects. This paper aims to solve some of the downsides in existing routing protocols for WSNs; a Lightweight and Efficient Dynamic Cluster Head Election routing protocol (LEDCHE-WSN) is proposed. The proposed routing algorithm comprises two integrated methods, electing the optimum cluster head, and organizing the re-clustering process dynamically. Furthermore, the proposed protocol improves on others present in the literature by combining the random and periodic electing method in the same round, and the random method starts first at the beginning of each round/cycle. Moreover, both random and periodic electing methods are preceded by checking the remaining power to skip the dead nodes and continue in the same way periodically with the rest of the nodes in the round. Additionally, the proposed protocol is distinguished by deleting dead nodes from the network topology list during the re-clustering process to address the black holes and routing delay problems. Finally, the proposed algorithm's mathematical modeling and analysis are introduced. The experimental results reveal the proposed protocol outperforms the LEACH protocol by approximately 32% and the FBCFP protocol by 8%, in terms of power consumption and network lifetime. In terms of Mean Package Delay, LEDCHE-WSN improves the LEACH protocol by 42% and the FBCFP protocol by 15%, and regarding Loss Ratio, it improves the LEACH protocol by approximately 46% and FBCFP protocol by 25%.

19.
Sensors (Basel) ; 21(13)2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34283147

RESUMEN

Forest fire monitoring is very much needed for protecting the forest from any kind of disaster or anomaly leading to the destruction of the forest. Now, with the advent of Internet of Things (IoT), a good amount of research has been done on energy consumption, coverage, and other issues. These works did not focus on forest fire management. The IoT-enabled environment is made up of low power lossy networks (LLNs). For improving the performance of routing protocol in forest fire management, energy-efficient routing protocol for low power lossy networks (E-RPL) was developed where residual power was used as an objective function towards calculating the rank of the parent node to form the destination-oriented directed acyclic graph (DODAG). The challenge in E-RPL is the scalability of the network resulting in a long end-to-end delay and less packet delivery. Additionally, the energy of sensor nodes increased with different transmission range. So, for obviating the above-mentioned drawbacks in E-RPL, compressed data aggregation and energy-based RPL routing (CAA-ERPL) is proposed. The CAA-ERPL is compared with E-RPL, and the performance is analyzed resulting in reduced packet transfer delay, less energy consumption, and increased packet delivery ratio for 10, 20, 30, 40, and 50 nodes. This has been evaluated using a Contiki Cooja simulator.


Asunto(s)
Redes de Comunicación de Computadores , Compresión de Datos , Bosques , Tecnología Inalámbrica
20.
Int J Mach Learn Cybern ; 12(11): 3235-3248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33727984

RESUMEN

At present times, the drastic advancements in the 5G cellular and internet of things (IoT) technologies find useful in different applications of the healthcare sector. At the same time, COVID-19 is commonly spread from animals to persons, but today it is transmitting among persons by adapting the structure. It is a severe virus and inappropriately resulted in a global pandemic. Radiologists utilize X-ray or computed tomography (CT) images to diagnose COVID-19 disease. It is essential to identify and classify the disease through the use of image processing techniques. So, a new intelligent disease diagnosis model is in need to identify the COVID-19. In this view, this paper presents a novel IoT enabled Depthwise separable convolution neural network (DWS-CNN) with Deep support vector machine (DSVM) for COVID-19 diagnosis and classification. The proposed DWS-CNN model aims to detect both binary and multiple classes of COVID-19 by incorporating a set of processes namely data acquisition, Gaussian filtering (GF) based preprocessing, feature extraction, and classification. Initially, patient data will be collected in the data acquisition stage using IoT devices and sent to the cloud server. Besides, the GF technique is applied to remove the existence of noise that exists in the image. Then, the DWS-CNN model is employed for replacing default convolution for automatic feature extraction. Finally, the DSVM model is applied to determine the binary and multiple class labels of COVID-19. The diagnostic outcome of the DWS-CNN model is tested against Chest X-ray (CXR) image dataset and the results are investigated interms of distinct performance measures. The experimental results ensured the superior results of the DWS-CNN model by attaining maximum classification performance with the accuracy of 98.54% and 99.06% on binary and multiclass respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA