RESUMEN
Schistosomiasis is a parasitic infection caused by trematode worms (also called blood flukes) of the genus Schistosoma sp., which affects over 230 million people worldwide, causing 200,000 deaths annually. There is no vaccine or new drugs available, which represents a worrying aspect, since there is loss of sensitivity of the parasite to the medication recommended by the World Health Organization, Praziquantel. The present study evaluated the effects of the recombinant enzymes of S. mansoni Hypoxanthine-Guanine Phosphoribosyltransferase (HGPRT), Purine Nucleoside Phosphorylase (PNP) and the MIX of both enzymes in the immunotherapy of schistosomiasis in murine model. These enzymes are part of the purine salvage pathway, the only metabolic pathway present in the parasite for this purpose, being essential for the synthesis of DNA and RNA. Female mice of Swiss and BALB/c strains were infected with cercariae and treated, intraperitoneally, with three doses of 100 µg of enzymes. After the immunotherapy, the eggs and adult worms were counted in the feces; the number of eosinophils from the fluid in the peritoneal cavity and peripheral blood was observed; and the quantification of the cytokine IL-4 and the production of antibodies IgE was analyzed. The evaluation of the number of granulomas and collagen deposition via histological slides of the liver was performed. The results demonstrate that immunotherapy with the enzyme HGPRT seems to stimulate the production of IL-4 and promoted a significant reduction of granulomas in the liver in treated animals. The treatment with the enzyme PNP and the MIX was able to reduce the number of worms in the liver and in the mesenteric vessels of the intestine, to reduce the number of eggs in the feces and to negatively modulate the number of eosinophils. Therefore, immunotherapy with the recombinant enzymes of S. mansoni HGPRT and PNP might contribute to the control and reduction of the pathophysiological aspects of schistosomiasis, helping to decrease the morbidity associated with the infection in murine model.
RESUMEN
Protein p53 is degraded by the 26S proteasome, a protein complex that breaks down cellular proteins. Degradation begins with activation of the protein ubiquitin (Ub) by the ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, and ubiquitin E3 ligases, linking Ub or the polyubiquitin chain to p53 and marking it for degradation by the 26S proteasome. E3 ubiquitin ligases participate in this process and regulate p53 stability. There are compounds that inhibit the 26S proteasome and interfere at the p53 level, and some of these inhibitors are used to treat cancer and other diseases and can stabilize tumor suppressor proteins through the p53 pathway. This review discusses how the ubiquitin-proteasome system, p53, and these compounds are related.
RESUMEN
Long non-coding RNAs (lncRNAs) perform several types of regulatory functions and have been recently explored in the genus Schistosoma. Although sequencing and bioinformatics approaches have demonstrated the presence of hundreds of lncRNAs and microRNAs (miRNAs) in this genus, information regarding their abundance, characteristics, and potential functions linked to Schistosoma mansoni biology and parasite-host interaction is limited. Our objectives in the present study were to verify whether 15 previously identified S. mansoni lncRNAs are detectable in the host liver. In addition, we assess whether these lncRNAs are present in the S. mansoni infective form and the stages inside the definitive host. The detection of these 15 S. mansoni lncRNAs and a long terminal repeat (LTR) retrotransposon Saci 4 was performed in the eggs, cercariae, and 3.5-h schistosomula. All lncRNAs were found to be expressed in these stages; some of the lncRNAs were found in the livers of the infected C57BL/6 mice. In conclusion, S. mansoni lncRNAs were detected in host livers and quantified. Furthermore, many of the lncRNAs analyzed showed differential expression in the larval stages, indicating that they play a stage-specific regulatory role.
Asunto(s)
Hígado/parasitología , ARN Largo no Codificante/aislamiento & purificación , Schistosoma mansoni/genética , Esquistosomiasis mansoni/parasitología , Animales , Mapeo Cromosómico , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Retroelementos/fisiología , Transcripción Reversa , Schistosoma mansoni/crecimiento & desarrollo , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis mansoni/patologíaRESUMEN
Infection by Schistosoma parasites culminates in a chronic granulomatous disease characterized by intense tissue fibrosis. Along the course of schistosomiasis, diverse leukocytes are recruited for inflammatory foci. Innate immune cell accumulation in Th2-driven granulomas around Schistosoma eggs is associated with increased collagen deposition, while monocytes and macrophages exert critical roles during this process. Monocytes are recruited to damaged tissues from blood, produce TGF-ß and differentiate into monocyte-derived macrophages (MDMs), which become alternatively activated by IL-4/IL-13 signaling via IL-4Rα (AAMs). AAMs are key players of tissue repair and wound healing in response to Schistosoma infection. Alternative activation of macrophages is characterized by the activation of STAT6 that coordinates the transcription of Arg1, Chi3l3, Relma, and Mrc1. In addition to these markers, monocyte-derived AAMs also express Raldh2 and Pdl2. AAMs produce high levels of IL-10 and TGF-ß that minimizes tissue damage caused by Schistosoma egg accumulation in tissues. In this review, we provide support to previous findings about the host response to Schistosoma infection reusing public transcriptome data. Importantly, we discuss the role of monocytes and macrophages with emphasis on the mechanisms of alternative macrophage activation during schistosomiasis.
RESUMEN
The proteasome is the key player in the cellular protein degradation machinery and is pivotal for protein homeostasis and Schistosoma mansoni (S. mansoni) survival. Our group study provides insights into proteasome inhibitors and reveals that selective schistosomiasis agents represent an interesting branch of proteasome research linked to the development of new drugs for this neglected disease. Here, we explored the phenotypic response of S. mansoni to b-AP15, a bis-benzylidine piperidone that inhibits 26S proteasome deubiquitinases (DUBs), ubiquitin-specific protease 14 (USP14), and ubiquitin carboxyl-terminal hydrolase 5 (UCHL5). b-AP15 induces a modest decrease in egg production in vitro and reduces viability, leading to the death of parasite couples. This inhibitor also induces a twofold increase in the accumulation of polyubiquitinated proteins in S. mansoni adult worms and causes tegument changes such as disintegration, wrinkling, and bubble formation, both throughout the length of the parasite and in the oral sucker. b-AP15 alters the cell organelles of adult S. mansoni worms, and we specifically observed mitochondrial alterations, which are suggestive of proteotoxic stress leading to autophagy. Taken together, these results indicate that the deubiquitinase function of the proteasome is essential for the parasite and support the hypothesis that the proteasome constitutes an interesting drug target for the treatment of schistosomiasis.
Asunto(s)
Enzimas Desubicuitinizantes/antagonistas & inhibidores , Oviposición/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Schistosoma mansoni/efectos de los fármacos , Animales , Femenino , Proteínas del Helminto/metabolismo , Piperidonas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Schistosoma mansoni/metabolismo , Schistosoma mansoni/fisiología , Ubiquitinación/efectos de los fármacosRESUMEN
Schistosoma mansoni adaptive success is related to regulation of replication, transcription and translation inside and outside the intermediate and definitive host. We hypothesize that S. mansoni alters its epigenetic state in response to the mammalian host immune system, reprogramming gene expression and altering the number of eggs. In response, a change in the DNA methylation profile of hepatocytes could occurs, modulating the extent of hepatic granuloma. To investigate this hypothesis, we used the EBi3-/- murine (Mus musculus) model of S. mansoni infection and evaluated changes in new and maintenance DNA methylation profiles in the liver after 55 days of infection. We evaluated expression of epigenetic genes and genes linked to histone deubiquitination in male and female S. mansoni worms. Comparing TET expression with DNMT expression indicated that DNA demethylation exceeds methylation in knockout infected and uninfected mice and in wild-type infected and uninfected mice. S. mansoni infection provokes activation of demethylation in EBi3-/-I mice (knockout infected). EBi3-/-C (knockout uninfected) mice present intrinsically higher DNA methylation than WTC (control uninfected) mice. EBi3-/-I mice show decreased hepatic damage considering volume and reduced number of granulomas compared to WTI mice; the absence of IL27 and IL35 pathways decreases the Th1 response resulting in minor liver damage. S. mansoni males and females recovered from EBi3-/-I mice have reduced expression of a deubiquitinating enzyme gene, orthologs of which target histones and affect chromatin state. SmMBD and SmHDAC1 expression levels are downregulated in male and female parasites recovered from EBi3-/-, leading to epigenetic gene downregulation in S. mansoni. Changes to the immunological background thus induce epigenetic changes in hepatic tissues and alterations in S. mansoni gene expression, which attenuate liver symptoms in the acute phase of schistosomiasis.
Asunto(s)
Epigénesis Genética , Antígenos de Histocompatibilidad Menor/genética , Receptores de Citocinas/genética , Esquistosomiasis mansoni/inmunología , Animales , Metilación de ADN , Femenino , Regulación de la Expresión Génica/inmunología , Hígado/metabolismo , Hígado/parasitología , Masculino , Ratones , Ratones Noqueados , MicroARNs , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/parasitologíaRESUMEN
BACKGROUND: Schistosomiasis control in endemic areas depends on several factors, including chemotherapy, snail control and adequate sanitation. In this context, the employment of compounds isolated from plants is an important issue regarding infection and snail control. The aim of this study was therefore to evaluate the effects of curcumin (CUR), a compound isolated from Curcuma longa, against snails and embryos of Biomphalaria glabrata, which is the most important intermediate host of schistosomiasis in the Americas, as well as in cercariae, the infecting larval stage of Schistosoma mansoni. RESULTS: CUR presented high activity against B. glabrata embryos and moderate activity against newborn and adult snails. The lethal concentration (LC50 ) values after being exposed for 24 h and evaluated for 7 days were 6.54 (95% confidence interval (CI) 5.86-7.30) µg mL-1 for the embryos and 42.29 (95% CI 33.82-52.87) µg mL-1 and 87.69 (95% CI 68.82-111.7) µg mL-1 for the newborn and adult snails, respectively. Moreover, CUR inhibited the development of embryos and egg hatching, and decreased the fecundity rates of adult snails. CUR also demonstrated cercaricidal activity with LC50 values lower than 10 µg mL-1 at 1, 3, 6, 9 and 12 h, respectively. CONCLUSION: Our data show that CUR has potential molluscicidal and cercaricidal activities. Moreover, as a nutraceutical compound that is toxic to both invertebrate host and parasite, CUR has the potential to be explored as a safe new agent to combat schistosomiasis. © 2019 Society of Chemical Industry.
Asunto(s)
Biomphalaria , Moluscocidas , Schistosoma mansoni , Animales , Curcumina , Dosificación Letal MedianaRESUMEN
Infection with Schistosoma mansoni causes a chronic parasitic disease that progress to severe liver and gastrointestinal damage, and eventually death. During its development into mammalian hosts, immature schistosomula transit through the lung vasculature before they reach the liver to mature into adult worms. A low grade inflammatory reaction is induced during this process. However, molecules that are required for efficient leukocyte accumulation in the lungs of S. mansoni-infected subjects are unknown. In addition, specific leukocyte subsets that mediate pulmonary response during S. mansoni migration through the lung remain to be elucidated. ß2 integrins are fundamental regulators of leukocyte trans-endothelial migration and function. Therefore, we investigated their role during experimental schistosomiasis. Mice that express low levels of CD18 (the common ß2 integrin subunit) and wild type C57BL/6 mice were subcutaneously infected with S. mansoni cercariae. Cellular profiles of lungs and livers were evaluated in different time points after infection by flow cytometry. Low levels of CD18 affected the accumulation of patrolling Ly6Clow, intermediate Ly6Cinter monocytes, monocyte-derived macrophages and monocyte-derived dendritic cells in the lungs 7 days after infection. This correlated with increased TNF-α levels. Strikingly, low CD18 expression resulted in monocytopenia both in the peripheral blood and bone marrow during acute infection. After 48 days, S. mansoni worm burdens were higher in the hepatic portal system of CD18low mice, which also displayed reduced hepatic accumulation of patrolling Ly6Clow and intermediate Ly6Cinter, but not inflammatory Ly6Chigh monocytes. Higher parasite burden resulted in increased granulomatous lesions in the liver, increased egg deposition and enhanced mortality. Overall, our data point for a fundamental role of CD18 for monocyte hematopoiesis during infection, which promotes an efficient host response against experimental schistosomiasis.
Asunto(s)
Antígenos CD18/metabolismo , Leucocitos Mononucleares/fisiología , Pulmón/inmunología , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/inmunología , Animales , Antígenos Ly/metabolismo , Antígenos CD18/genética , Movimiento Celular , Resistencia a la Enfermedad , Hematopoyesis , Humanos , Inmunidad Innata , Pulmón/parasitología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Modelos Animales , Mutación/genética , Recuento de Huevos de ParásitosRESUMEN
Schistosomiasis mansoni is involved in hepatic fibrogenesis and portal hypertension. Previous studies proved that blockade of some components of the renin-angiotensin system (RAS) reduce liver fibrogenesis. However, the effects of inhibition of early stages of RAS pathway in schistosomal fibrosis have not been studied yet. Thus, the aim of this study was to compare the role of different antihypertensive drugs on hepatic fibrosis in murine schistosomiasis. BALB/c mice (nâ¯=â¯50) weighing 20g were subjected to inoculation of 50 cercariae and submitted to different treatments: aliskiren, 50â¯mg/kg (nâ¯=â¯10); bradykinin, 2⯵g/kg (nâ¯=â¯5); losartan, 10â¯mg/kg (nâ¯=â¯10); lisinopril 10â¯mg/kg (nâ¯=â¯5) and control, proportional volume vehicle (nâ¯=â¯5); daily for 14 weeks. Six animals were not subjected to cercariae inoculation or any type of treatment. Ultrasound, histological, immunohistochemical and proteomic analyzes were performed to evaluate markers associated with hepatic fibrogenesis. The hepatic areas stained with Sirius red and thenumber of cells marked by α-SMA in animals treated with aliskiren, bradykinin, lisinopril and losartan were diminished when compared to control group, demonstrating reduced hepatic fibrosis after RAS blockade. These results were reinforced by ultrasonography analysis and protein expression of TGFß. These findings demonstrated the effect of RAS inhibition on hepatic fibrosis in murine schistosomiasis, with the most evident results being observed in the losartan and aliskiren treated groups. The main mechanisms underlying this process appear to involve anti-fibrogenic activity through the inhibition of collagen and TGFß synthesis.
Asunto(s)
Cirrosis Hepática/tratamiento farmacológico , Sistema Renina-Angiotensina/efectos de los fármacos , Esquistosomiasis mansoni/complicaciones , Amidas/farmacología , Amidas/uso terapéutico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Bradiquinina/farmacología , Bradiquinina/uso terapéutico , Fumaratos/farmacología , Fumaratos/uso terapéutico , Lisinopril/farmacología , Lisinopril/uso terapéutico , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/parasitología , Losartán/farmacología , Losartán/uso terapéutico , Masculino , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa de Tipo III/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Renina/efectos de los fármacos , Renina/genética , Renina/metabolismo , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/patología , Inhibidor Tisular de Metaloproteinasa-1/efectos de los fármacos , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor de Crecimiento Transformador beta1/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Vasodilatadores/farmacología , Vasodilatadores/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
We have evaluated the antischistosomal activity of synthetic dihydrobenzofuran neolignans (DBNs) derived from (±)-trans-dehydrodicoumaric acid dimethyl ester (1) and (±)-trans-dehydrodiferulic acid dimethyl ester (2) against adult Schistosoma mansoni worms in vitro. Compound 4 ((±)-trans-4-O-acetyldehydrodiferulic acid dimethyl ester) displayed the most promising activity; at 200 µm, it kills 100 ± 0% of worms after 24 h, which resembles the result achieved with praziquantel (positive control) at 1.56 µm. The hydrogenation of the double bond between C7' and C8', the introduction of an additional methyl group at C3', and a double bond between C7 and C8 decreased the schistosomicidal activity of DBNs. On the other hand, the presence of the acetoxy group at C4 played an interesting role in this activity. These results demonstrated the interesting schistosomicidal potential of DBNs, which could be further exploited.
Asunto(s)
Lignanos/farmacología , Schistosoma mansoni/efectos de los fármacos , Esquistosomicidas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Lignanos/síntesis química , Lignanos/química , Estructura Molecular , Esquistosomicidas/síntesis química , Esquistosomicidas/químicaRESUMEN
This paper is the first report on the in vitro effects of licochalcone A, a chalcone isolated from Glycyrrhiza inflate Batalin (Leguminosae), on Schistosoma mansoni adult worms. In vitro, licochalcone A afforded lethal concentrations for 50% of parasites (LC50) of 9.12±1.1 and 9.52±0.9µM against female and male adult worms, respectively, at 24h. Additionally, the compound reduced the total number of S. mansoni eggs and affected the development of eggs produced by S. mansoni adult worms. Together, the results achieved after 24h showed that licochalcone A was 55.7- and 53.3-fold more toxic to S. mansoni female and male adult worms than to Chinese hamster ovary fibroblasts cells, respectively. Treatment with licochalcone A elicited drastic changes in the tegument of S. mansoni adult worms, as well as mitochondrial alteration and chromatin condensation. Licochalcone A also increased the superoxide anion level and decreased the superoxide dismutase activity in S. mansoni adult worms. Overall, our results indicated that licochalcone A displays in vitro schistosomicidal activity. This effect may result from increased production of reactive oxygen species (ROS) induced by the action of licochalcone A. The resulting ROS could act on the S. mansoni tegument and membranes and help induce the death of S. mansoni adult worms.
Asunto(s)
Chalconas/farmacología , Glycyrrhiza , Extractos Vegetales/farmacología , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/metabolismo , Factores de Edad , Animales , Relación Dosis-Respuesta a Droga , Femenino , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Óvulo/efectos de los fármacos , Óvulo/metabolismo , Óvulo/patología , Extractos Vegetales/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Schistosoma mansoni/citología , CaracolesRESUMEN
Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites' tegument. We identified 1,919 genes with a statistically significant (q-value ≤ 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis inhibitor genes, IAP1 and BRE1, and in contrast, down-regulation of Apaf-1 apoptotic activator, thus suggesting that apoptosis is deregulated in S. mansoni exposed to MG-132. A considerable insight has been gained concerning the potential of MG-132 as a gene expression modulator, and overall the data suggest that the proteasome might be an important molecular target for the design of new drugs against schistosomiasis.
Asunto(s)
Leupeptinas/farmacología , Inhibidores de Proteasoma/farmacología , Schistosoma mansoni/efectos de los fármacos , Animales , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Reproducibilidad de los Resultados , Schistosoma mansoni/genética , Schistosoma mansoni/ultraestructura , TranscriptomaRESUMEN
VIP36 is a protein described as an L-type lectin in animals, responsible for the intracellular transport of glycoproteins within the secretory pathway, and also localized on the plasma membrane. Schistosoma mansoni has a complex system of vesicles and protein transport machinery to the cell surface. The excreted/secreted products of the larvae and eggs are known to be exposed to the host immune system. Hence, characterizing the role and action of SmVIP36 in the S. mansoni life cycle is important for a better understanding of the parasite-host relationship. To this purpose, we firstly performed in silico analysis. Analysis of SmVIP36 in silico revealed that it contains a lectin leg-like domain with a jellyroll fold as seen by its putative 3D tertiary structure. Additionally, it was also observed that its CRD contains calcium ion-binding amino acids, suggesting that the binding of SmVIP36 to glycoproteins is calcium-dependent. Finally, we observed that the SmVIP36 predicted amino acid sequence relative to its orthologs was conserved. However, phylogenetic analysis revealed that SmVIP36 follows species evolution, forming a further cluster with its definitive host Homo sapiens. Moreover, q-PCR analysis in the S. mansoni life cycle points to a significant increase in gene expression in the eggs, schistosomulae, and female adult stages. Similarly, protein expression increased in eggs, cercariae, schistosomulae, and adult worm stages. These results suggest that SmVIP36 might participate in the complex secretory activity within the egg envelope and tegument proteins, both important for the stages of the parasite that interact with the host.
Asunto(s)
Proteínas del Helminto/genética , Lectinas/genética , Proteínas de la Membrana/genética , Schistosoma mansoni/crecimiento & desarrollo , Schistosoma mansoni/genética , Secuencia de Aminoácidos , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Femenino , Expresión Génica , Proteínas del Helminto/metabolismo , Humanos , Lectinas/metabolismo , Estadios del Ciclo de Vida , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Filogenia , Transporte de Proteínas , Schistosoma mansoni/clasificación , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis mansoni/parasitologíaRESUMEN
We report the in vitro schistosomicidal effects of the essential oil obtained from Citrus limonia leaves (CL-EO) and C. reticulata fruit peels (CR-EO), cultivated in Brazil, against Schistosoma mansoni worms. Limonene (29.9%), ß-pinene (12.0%), sabinene (9.0%), citronellal (9.0%), and citronellol (5.8%) are the major constituents of CL-EO; limonene (26.5%), γ-terpinene (17.2%), linalool (11.1%), octanal (8.0%), myrcene (6.2%), and capraldehyde (3.9%) predominate in CR-EO. CL-EO displayed moderate lethal concentration 50% (LC50 ) of 81.7 and 38.9 µg/ml against male and female worms at 24 and 72 h, respectively. At concentrations of 25 and 100 µg/ml, CL-EO separated between 50 and 75% of the coupled worm pairs during the evaluated period. CR-EO presented moderate LC50 of 81.7 µg/ml against male and female worms at 24 and 72 h. However, this oil separated coupled worm pairs more effectively than CL-EO and displayed lower cytotoxicity to GM07492-A cells (IC50 = 987.7 ± 88.9 µg/ml) as compared to CL-EO (IC50 = 187.8 ± 2.9 µg/ml). The enantiomers (+)-(R)-limonene and (-)-(S)-limonene did not affect S. mansoni adult worm pairs significantly. Taken together, these data indicate that CL-EO and CR-EO exhibit moderate in vitro schistosomicidal activity against adult S. mansoni worms.
Asunto(s)
Citrus/química , Aceites Volátiles/farmacología , Schistosoma mansoni/efectos de los fármacos , Esquistosomicidas/farmacología , Animales , Femenino , Frutas , Masculino , Aceites Volátiles/análisis , Hojas de la Planta/químicaRESUMEN
Schistosomiasis is an important parasitic disease caused by Schistosoma mansoni, an intravascular trematode. Schistosomiasis treatment is limited to just one drug, Praziquantel (PZQ). Thus, studies on new antischistosomal compounds are of fundamental importance to disease control. Here we report on the effects of Mentha piperita L. compounds - menthol and menthone - in association with acetylsalicylic acid (ASA) in the regulation of hepatic fibrosis caused by schistosomiasis granulomas. Six different groups of Swiss rats were infected with 80 cercariae. Two groups received only menthol and menthol treatment at different concentrations (30 and 50 mg/kg); two groups received treatment with the same concentration of menthol and menthol, but associated the ASA. All groups received treatment for 14 consecutive days from the 35 days after the parasitic infection. In addition, three other groups were used: uninfected and untreated group, infected and untreated group and infected group treated with the commercial drug (single dose). Parasitological, cytological and histological analyses were performed. Results showed a significant reduction on the number of eosinophils found in the peritoneal cavity lavage (LPC) in all treated groups and on the number of eosinophils found in the blood of PZQ treated group, in the blood of the group treated with 30 mg/kg of Mentaliv® and in the blood of group treated with 50 mg/kg Mentaliv® + ASA when compared to the infected group. All treated groups presented a reduction in the parasite load, represented by the number of S. mansoni eggs, in the experimental group treated with 30 mg/kg of menthol and menthone a 62.80% reduction was observed and in the experimental group treated with 50 mg/kg of menthol and menthone + ASA a reduction of 64.21% was observed. In the liver histological analysis we observed that all Mentaliv® treated groups expressed a unique cytological profile, with diffused cells through the granuloma. In the experimental group treated with 50 mg/kg of Mentaliv® + ASA it was possible to observe the formation of type III collagen fibers, a typical wound healing characteristic. Our data strongly suggest that both the hepatic fibrosis and the inflammatory process were regulated through the schistosomiasis granulomatous process after treatment with menthol and menthone associated with ASA.
RESUMEN
Inducing apoptosis is an interesting therapeutic approach to develop drugs that act against helminthic parasites. Researchers have investigated how curcumin (CUR), a biologically active compound extracted from rhizomes of Curcuma longa, affects Schistosoma mansoni and several cancer cell lines. This study evaluates how CUR influences the induction of apoptosis and oxidative stress in couples of adult S. mansoni worms. CUR decreased the viability of adult worms and killed them. The tegument of the parasite suffered morphological changes, the mitochondria underwent alterations, and chromatin condensed. Different apoptotic parameters were determined in an attempt to understand how CUR affected adult S. mansoni worms. CUR induced DNA damage and fragmentation and increased the expression of SmCASP3/7 transcripts and the activity of Caspase 3 in female and male worms. However, CUR did not intensify the activity of Caspase 8 in female or male worms. Evaluation of the superoxide anion and different antioxidant enzymes helped to explore the mechanism of parasite death further. The level of superoxide anion and the activity of Superoxide Dismutase (SOD) increased, whereas the activity of Glutathione-S-Transferase (GST), Glutathione reductase (GR), and Glutathione peroxidase (GPX) decreased, which culminated in the oxidation of proteins in adult female and male worms incubated with CUR. In conclusion, CUR generated oxidative stress followed by apoptotic-like-events in both adult female and male S. mansoni worms, ultimately killing them.
Asunto(s)
Apoptosis/efectos de los fármacos , Curcumina/farmacología , Estrés Oxidativo/efectos de los fármacos , Schistosoma mansoni/metabolismo , Animales , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Femenino , Proteínas del Helminto/metabolismo , Masculino , Oxidorreductasas/metabolismo , Superóxidos/metabolismoRESUMEN
In this article, the in vitro schistosomicidal effects of three Brazilian Copaifera oleoresins (C. duckei, C. langsdorffii, and C. reticulata) are reported. From these botanical sources, the oleoresin of C. duckei (OCd) demonstrated to be the most promising, displaying LC50 values of 75.8, 50.6, and 47.2 µg/ml at 24, 48, and 72 h of incubation, respectively, against adult worms of Schistosoma mansoni, with a selectivity index of 10.26. Therefore, the major compounds from OCd were isolated, and the diterpene, (-)-polyalthic acid (PA), showed to be active (LC50 values of 41.7, 36.2, and 33.4 µg/ml, respectively, at 24, 48, and 72 h of incubation). Moreover, OCd and PA affected the production and development of eggs, and OCd modified the functionality of the tegument of S. mansoni. Possible synergistic and/or additive effects of this balsam were also verified when a mixture of the two of its main compounds (PA and ent-labd-8(17)-en-15,18-dioic acid) in the specific proportion of 3:1 (w/w) was tested. The obtained results indicate that PA should be considered for further investigations against S. mansoni, such as, synergistic (combination with praziquantel (PZQ)) and in vivo studies. It also shows that diterpenes are an important class of natural compounds for the investigation of agents capable of fighting the parasite responsible for human schistosomiasis.
Asunto(s)
Diterpenos/farmacología , Fabaceae/química , Schistosoma mansoni/efectos de los fármacos , Esquistosomicidas/farmacología , Animales , Brasil , Diterpenos/química , Diterpenos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Esquistosomicidas/química , Esquistosomicidas/aislamiento & purificaciónRESUMEN
Several signaling molecules that govern development in higher animals have been identified in the parasite Schistosoma mansoni, including the transforming growth factor ß, protein tyrosine kinases, nuclear hormone receptors, among others. The Notch pathway is a highly conserved signaling mechanism which is involved in a wide variety of developmental processes including embryogenesis and oogenesis in worms and flies. Here we aimed to provide the molecular reconstitution of the Notch pathway in S. mansoni using the available transcriptome and genome databases. Our results also revealed the presence of the transcripts coded for SmNotch, SmSu(H), SmHes, and the gamma-secretase complex (SmNicastrin, SmAph-1, and SmPen-2), throughout all the life stages analyzed. Besides, it was observed that the viability and separation of adult worm pairs were not affected by treatment with N-[N(3,5)-difluorophenacetyl)-L-Alanyl]-S-phenylglycine t-butyl ester (DAPT), a Notch pathway inhibitor. Moreover, DAPT treatment decreased the production of phenotypically normal eggs and arrested their development in culture. Our results also showed a significant decrease in SmHes transcript levels in both adult worms and eggs treated with DAPT. These results provide, for the first time, functional validation of the Notch pathway in S. mansoni and suggest its involvement in parasite oogenesis and embryogenesis. Given the complexity of the Notch pathway, further experiments shall highlight the full repertoire of Notch-mediated cellular processes throughout the S. mansoni life cycle.
Asunto(s)
Genoma de los Helmintos/genética , Receptores Notch/genética , Schistosoma mansoni/genética , Esquistosomiasis mansoni/parasitología , Transducción de Señal , Transcriptoma , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Biología Computacional , Diaminas/farmacología , Femenino , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Óvulo/efectos de los fármacos , Receptores Notch/metabolismo , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/fisiología , Caracoles , Tiazoles/farmacologíaRESUMEN
Abstract Schistosomiasis, a chronic disease that affects million people worldwide, is caused by trematode flukes of the genus Schistosoma. The lack of an anti-schistosomiasis vaccine and massive monotherapy with praziquantel reinforces the need for search and development of new therapeutic drugs. Recently, we demonstrated that the essential oil of Piper cubeba L., Piperaceae, and their derivative dibenzylbutyrolactolic (-)-6,6'-dinitrohinokinin, presents in vitro and in vivo activities against Schistosoma mansoni. Here, we identified changes in the protein expression after exposure to dibenzylbutyrolactolic (-)-6,6'-dinitrohinokinin. We applied two-dimensional gel electrophoresis (2-DE) to S. mansoni soluble protein extracts and observed at least 38 spots to be affected by dibenzylbutyrolactolic (-)-6,6'-dinitrohinokinin. We further identified 25 differentially expressed proteins by mass spectrometry. Enrichment for biological processes and predictive analyses of protein-protein interactions suggest that dibenzylbutyrolactolic (-)-6,6'-dinitrohinokinin targets proteins involved mainly in metabolic processes, especially carbohydrate metabolism. In summary, this study provides an interesting approach to understand the anti-parasitic activity of semi-synthetic (-)-6,6'-dinitrohinokinin a derivative compound from lignan and for the development of new therapy strategies.
RESUMEN
Foeniculum vulgare Mill. (Apiaceae), known as fennel, is a widespread aromatic herbaceous plant, and its essential oil is used as additive in the food, pharmaceutical, cosmetic, and perfume industries. The in vitro antischistosomal activity and cytotoxic effects against V79 cells of the essential oil of F. vulgare cultivated in southeastern Brazil (FV-EO) was investigated. The FV-EO was obtained by hydrodistillation and characterized by GC-FID and GC/MS analyses. (E)-Anethole (69.8%) and limonene (22.5%) were identified as the major constituents. Its anthelmintic activity against Schistosoma mansoni was evaluated at concentrations of 10, 50, and 100â µg/ml, and it was found to be active against adult S. mansoni worms, although it was less effective than the positive control praziquantel (PZQ) in terms of separation of the coupled pairs, mortality, and decreased motor activity. However, FV-EO elicited an interesting dose-dependent reduction in the number of S. mansoni eggs. On their own, (E)-anethole and the limonene enantiomers were much less effective than FV-EO and PZQ. An XTT-cytotoxicity-based assay evidenced no FV-EO cytotoxicity against V79 cells. In summary, FV-EO displayed moderate in vitro schistosomicidal activity against adult S. mansoni worms, exerted remarkable inhibitory effects on the egg development, and was of low toxicity.