Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1833: 148866, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494098

RESUMEN

Caffeine has been extensively studied in the context of CNS pathologies as many researchers have shown that consuming it reduces pro-inflammatory biomarkers, potentially delaying the progression of neurodegenerative pathologies. Several lines of evidence suggest that adenosine receptors, especially A1 and A2A receptors, are the main targets of its neuroprotective action. We found that caffeine pretreatment 15 min before LPS administration reduced the expression of Il1b in the hippocampus and striatum. The harmful modulation of caffeine-induced inflammatory response involved the downregulation of the expression of A2A receptors, especially in the hippocampus. Caffeine treatment alone promoted the downregulation of the adenosinergic receptor Adora2A; however, this promotion effect was reversed by LPS. Although administering caffeine increased the expression of the enzymes DNA methyltransferases 1 and 3A and decreased the expression of the demethylase enzyme Tet1, this effect was reversed by LPS in the hippocampus of mice that were administered Caffeine + LPS, relative to the basal condition; no significant differences were observed in the methylation status of the promoter regions of adenosine receptors. Finally, the bioinformatics analysis of the expanded network demonstrated the following results: the Adora2B gene connects the extended networks of the adenosine receptors Adora1 and Adora2A; the Mapk3 and Esr1 genes connect the extended Adora1 network; the Mapk4 and Arrb2 genes connect the extended Adora2A network with the extended network of the proinflammatory cytokine Il1ß. These results indicated that the anti-inflammatory effects of acute caffeine administration in the hippocampus may be mediated by a complex network of interdependencies between the Adora2B and Adora2A genes.


Asunto(s)
Cafeína , Regulación hacia Abajo , Hipocampo , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores , Receptor de Adenosina A2A , Animales , Lipopolisacáridos/farmacología , Receptor de Adenosina A2A/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Cafeína/farmacología , Masculino , Regulación hacia Abajo/efectos de los fármacos , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inducido químicamente , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Interleucina-1beta/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente
2.
Colloids Surf B Biointerfaces ; 174: 467-475, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30497008

RESUMEN

Although layered double hydroxides (LDH) have been listed as promising nanomaterials in human healthcare, very little has been achieved on osteoblast inflammatory signaling. Thus, osteoblasts were challenged with two LDHs (Mg2Al-Cl and Zn2Al-Cl, at 0.002 mg/mL) up to 24 h, establishing an acute inflammatory mechanism, as well as identifying whether Sonic hedgehog (Shh) signaling has an influence. Functional experiments were performed by previously treating (2 h) semiconfluent osteoblast cultures with cyclopamine molecule (cyc), a widely used Shh inhibitor. Considering inflammasome complex, the asc1 gene was significantly up-expressed in response to Zn2Al-Cl - LDHs, as well as the nrlp3 gene. By treating the osteoblast with cyc, the asc1 gene presented an even higher profile. Our results found a down-modulation of major pro-inflammatory cytokines-related genes, when tnfα and il1ß were significantly down-modulated in response to LDHs. Conversely, anti-inflammatory cytokines were up-modulated considering the same experimental procedures. Except the il6, the other il13, il10, and tgfß genes were up modulated. Additionally, Shh signaling seems to modulate this repertory as both the il13 and il10 genes were significantly up-modulated when the Shh signaling was inhibited. Altogether, our results reveal for the first time the exigency of Shh-dependent anti-inflammatory signals in LDH-induced osteoblast responses.


Asunto(s)
Proteínas Hedgehog/metabolismo , Hidróxidos/farmacología , Mediadores de Inflamación/metabolismo , Inflamación/inmunología , Osteoblastos/inmunología , Alcaloides de Veratrum/farmacología , Diferenciación Celular , Células Cultivadas , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/genética , Humanos , Hidróxidos/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Alcaloides de Veratrum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...