Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Schizophr Res ; 270: 260-272, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38944972

RESUMEN

BACKGROUND: It is known that the immune system is dysregulated in schizophrenia, having a state similar to chronic neuroinflammation. The origin of this process is unknown, but it is known that T and B lymphocytes, which are components of the adaptive immune system, play an important role in the pathogenic mechanisms of schizophrenia. METHODS: We analysed the membrane of PBMCs from patients diagnosed with schizophrenia through proteomic analysis (n = 5 schizophrenia and n = 5 control). We found the presence of the Kv1.3 voltage-gated potassium channel and its auxiliary subunit ß1 (KCNAB1) and ß2 (KCNAB2). From a sample of 90 participants, we carried out a study on lymphocytes with whole-cell patch-clamp experiments (n = 7 schizophrenia and n = 5 control), western blot (n = 40 schizophrenia and n = 40 control) and confocal microscopy to evaluate the presence and function of different channels. Kv in both cells. RESULTS: We demonstrated the overexpression of Kv1.1, Kv1.2, Kv1.3, Kv1.6, Kv4.2, Kv4.3 and Kv7.2 channels in PBMCs from patients with schizophrenia. This study represents a groundbreaking exploration, as it involves an electrophysiological analysis performed on T and B lymphocytes from patients diagnosed of schizophrenia compared to healthy participants. We observed that B lymphocytes exhibited an increase in output current along with greater peak current amplitude and voltage conductance curves among patients with schizophrenia compared with healthy controls. CONCLUSIONS: This study showed the importance of the B lymphocyte in schizophrenia. We know that the immune system is altered in schizophrenia, but the physiological mechanisms of this system are not very well known. We suggest that the B lymphocyte may be relevant in the pathophysiology of schizophrenia and that it should be investigated in more depth, opening a new field of knowledge and possibilities for new treatments combining antipsychotics and immunomodulators. The limitation is that all participants received antipsychotic medication, which may have influenced the differences observed between patients and controls. This implies that more studies need to be done where the groups can be separated according to the antipsychotic drug.

2.
Anal Methods ; 15(37): 4905-4917, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37718950

RESUMEN

The growth and development of the human brain is a long and complex process that requires a precise sequence of genetic and molecular events. This begins in the third week of gestation with the differentiation of neural progenitor cells and extends at least until late adolescence, possibly for life. One of the defects of this development is that we know very little about the signals that modulate this sequence of events. The first 3 years of life, during breastfeeding, is one of the critical periods in brain development. In these first years of life, it is believed that neurodevelopmental problems may be the molecular causes of mental disorders. Therefore, we herein propose a new hypothesis, according to which the chemical signals that could modulate this entire complex sequence of events appear in this early period, and the molecular level study of human breast milk and colostrum of mothers who give birth to children in different gestation periods could give us information on proteins influencing this process. In this work, we collected milk and colostrum samples (term, late preterm and moderate/very preterm) and exosomes were isolated. The samples of exosomes and complete milk from each fraction were analyzed by LC-ESI-MS/MS. In this work, we describe proteins in the different fractions of mature milk and colostrum of mothers with term, late preterm, or very preterm delivery, which could be involved in the regulation of the nervous system by their functions. We describe how they differ in different types of milk, paving the way for the investigation of possible new neuroregulatory pathways as possible candidates to modulate the nervous system.


Asunto(s)
Exosomas , Nacimiento Prematuro , Recién Nacido , Femenino , Embarazo , Adolescente , Niño , Humanos , Leche Humana/química , Leche Humana/metabolismo , Calostro/química , Calostro/metabolismo , Nacimiento Prematuro/metabolismo , Lactancia/fisiología , Exosomas/metabolismo , Proteómica , Espectrometría de Masas en Tándem
3.
Nutrients ; 15(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513702

RESUMEN

Human milk is the biological fluid with the highest exosome amount and is rich in microRNAs (miRNAs). These are key regulators of gene expression networks in both normal physiologic and disease contexts, miRNAs can influence many biological processes and have also shown promise as biomarkers for disease. One of the key aspects in the regeneration of the nervous system is that there are practically no molecules that can be used as potential drugs. In the first weeks of lactation, we know that human breast milk must contain the mechanisms to transmit molecular and biological information for brain development. For this reason, our objective is to identify new modulators of the nervous system that can be used to investigate neurodevelopmental functions based on miRNAs. To do this, we collected human breast milk samples according to the time of delivery and milk states: mature milk and colostrum at term; moderate and very preterm mature milk and colostrum; and late preterm mature milk. We extracted exosomes and miRNAs and realized the miRNA functional assays and target prediction. Our results demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function. We found 132 different miRNAs were identified across all samples. Sixty-nine miRNAs had significant differential expression after paired group comparison. These miRNAs are implicated in gene regulation of dopaminergic/glutamatergic synapses and neurotransmitter secretion and are related to the biological process that regulates neuron projection morphogenesis and synaptic vesicle transport. We observed differences according to the delivery time and with less clarity according to the milk type. Our data demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function.


Asunto(s)
MicroARNs , Embarazo , Recién Nacido , Femenino , Humanos , Animales , MicroARNs/genética , MicroARNs/metabolismo , Leche Humana/metabolismo , Leche/metabolismo , Calostro/metabolismo , Lactancia/genética , Sinapsis/metabolismo
4.
Front Pharmacol ; 13: 850583, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496309

RESUMEN

At the beginning of the pandemic, we observed that lithium carbonate had a positive effect on the recovery of severely ill patients with COVID-19. Lithium is able to inhibit the replication of several types of viruses, some of which are similar to the SARS-CoV-2 virus, increase the immune response and reduce inflammation by preventing or reducing the cytokine storm. Previously, we published an article with data from six patients with severe COVID-19 infection, where we proposed that lithium carbonate could be used as a potential treatment for COVID-19. Now, we set out to conduct a randomized clinical trial number EudraCT 2020-002008-37 to evaluate the efficacy and safety of lithium treatment in patients infected with severe SARS-CoV-2. We showed that lithium was able to reduce the number of days of hospital and intensive care unit admission as well as the risk of death, reduces inflammatory cytokine levels by preventing cytokine storms, and also reduced the long COVID syndromes. We propose that lithium carbonate can be used to reduce the severity of COVID-19.

5.
Front Psychiatry ; 13: 864511, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586410

RESUMEN

Substance-related disorders (SRD) have been consistently associated with alterations both in cognitive and executive functions, which affect to patients' quality of life. The main objective of this work was to test the beneficial cognitive effects on patients with SRD after the implementation of "Trisquel," an intervention program in board game format. To check the effectiveness of Trisquel program, a group of people diagnosed with SRD was randomly assigned either to the experimental group or to the control group. The experimental group performed Trisquel structured sessions twice a week during 3 months, while the control group performed routinely conventional therapeutic activities with the same frequency and duration. Neuropsychological tests were done to both groups before and after the intervention. After the 3 months of intervention the experimental group showed the following statistically significant improvements for WAIS-III subtests: number key, symbol search, arithmetic, direct digits, inverse digits, total digits, letters-numbers in the processing speed index and in the working memory index. Regarding STROOP tests, statistically significant progress was observed in the phonetic fluency letter P, phonetic fluency letter M, phonetic fluency letter R subtests, word-reading and word-color subtests. The control group only obtained improvements for WAIS-III subtests of arithmetic, letters-numbers and in the working memory index. The results of this study confirm that "Trisquel" is an effective intervention program for people diagnosed with SRD, getting improvements in processing speed (psychomotor and reading), attentional subprocesses (focused and sustained) and executive functions (updating and inhibition).

6.
Cell Mol Neurobiol ; 42(6): 1921-1932, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33712885

RESUMEN

The brain extracellular matrix (ECM) is involved in crucial processes of neural support, neuronal and synaptic plasticity, extrasynaptic transmission, and neurotransmission. ECM is a tridimensional fibrillary meshwork composed of macromolecules that determine its bioactivity and give it unique characteristics. The characterization of the brain ECM is critical to understand its dynamic in SZ. Thus, a comparative study was developed with 71 patients with schizophrenia (SZ) and 70 healthy controls. Plasma of participants was analysed by label-free liquid chromatography-tandem mass spectrometry, and the results were validated using the classical western blot method. Lastly, immunostaining of post-mortem human brain tissue was performed to analyse the distribution of the brain ECM proteins by confocal microscopy. The analysis identified four proteins: fibronectin, lumican, nidogen-1, and secreted protein acidic and rich in cysteine (SPARC) as components of the brain ECM. Statistical significance was found for fibronectin (P = 0.0166), SPARC (P = 0.0003), lumican (P = 0.0012), and nidogen-1 (P < 0.0001) that were decreased in the SZ group. Fluorescence imaging of prefrontal cortex (PFC) sections revealed a lower expression of ECM proteins in SZ. Our study proposes a pathophysiological dysregulation of proteins of the brain ECM, whose abnormal composition leads to a progressive neuronal impairment and consequently to neurodegenerative processes due to lack of neurophysiological support and dysregulation of neuronal homeostasis. Moreover, the brain ECM and its components are potential pharmacological targets to develop new therapeutic approaches to treat SZ.


Asunto(s)
Fibronectinas , Esquizofrenia , Encéfalo/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Lumican/metabolismo , Osteonectina/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo
7.
Rev. psiquiatr. salud ment. (Barc., Ed. impr.) ; 14(3): 125-138, jul.-sept. 2021. tab, graf
Artículo en Español | IBECS | ID: ibc-229563

RESUMEN

Introducción: La esquizofrenia es una enfermedad crónica que suele ir acompañada de trastornos metabólicos como la diabetes, la obesidad y problemas cardiovasculares asociados muchas veces a estilos de vida poco saludables, así como a problemas neuroendocrinos ocasionados por la propia enfermedad. Los cambios en el estilo de vida, como la práctica de ejercicio físico regular, tienen un efecto positivo sobre los trastornos metabólicos y la salud mental. Sin embargo, se desconocen los cambios moleculares y su consecuente repercusión en los pacientes diagnosticados con esquizofrenia. Con este estudio se pretenden analizar los cambios moleculares inducidos por el ejercicio físico en pacientes crónicos con esquizofrenia.MétodosVeintiún pacientes con esquizofrenia crónica fueron sometidos a un programa de entrenamiento aeróbico diario durante 6 meses. El grupo de pacientes se dividió en 2 subgrupos: un subgrupo que completó en su totalidad el programa de entrenamiento (12 pacientes) y un segundo subgrupo que abandonó el programa el primer día (9 pacientes). Se analizaron los datos bioquímicos y clínicos de cada paciente y se estudió el perfil proteómico del plasma mediante ESI-LC-MS/MS de tipo shotgun.ResultadosEl análisis proteómico reconoció 21.165 proteínas y péptidos diferentes en el plasma de los pacientes. Concretamente, 4.657 proteínas sufrieron variaciones significativas, de las cuales fueron identificadas 1.812 proteínas relacionadas con las vías metabólicas y de regulación biológica. Tras el análisis de los parámetros clínicos en estos pacientes, se encontraron diferencias significativas en el peso, el IMC, el perímetro abdominal, la presión arterial diastólica y los niveles de colesterol HDL. La puntuación en la Escala de Autoevaluación de Anhedonia fue el cambio más significativo, siendo más elevada en el subgrupo que abandonó el programa de entrenamiento en comparación con el subgrupo activo. (AU)


Introduction: Schizophrenia is a chronic illness often accompanied by metabolic disorders, diabetes, obesity and cardiovascular problems often associated with unhealthy lifestyles, as well as neuroendocrine problems caused by the disease itself. Lifestyle changes, such as regular physical exercise, have a positive effect on metabolic disorders and mental health, although the molecular changes that occur in this type of patient and how they explain the changes in their response are unknown. This study wants to analyze in a novel way the proteins and molecular pathways involved in critical plasmatic proteins in plasma to reveal the pathways involved in the implementation of physical exercise and the changes that occur among patients who participate in such programs with those who leave.MethodsTwenty-one patients with chronic schizophrenia underwent a daily, 6-month aerobic training program. We divided them into a group that completed the program (12 patients) and a second group that left the training program (9 patients). The biochemical and clinical data of each patient were analyzed and the proteomic profile of the plasma was studied using ESI-LC-MS/MS.ResultsProteomic analysis recognizes 21.165 proteins and peptides in each patient, of which we identified 1,812 proteins that varied between both groups linked to the metabolic and biological regulation pathways. After clinical analysis of each patient we found significant differences in weight, BMI, abdominal perimeter, diastolic blood pressure, and HDL cholesterol levels. The main change that vertebrates both groups is the Self-Assessment Anhedonia Scale, where we detected higher levels in the dropout group (no physical activity) compared to the active group. (AU)


Asunto(s)
Humanos , Cromatografía Liquida , Ejercicio Físico , Proteómica , Espectrometría de Masas en Tándem , Esquizofrenia
8.
Rev Psiquiatr Salud Ment (Engl Ed) ; 14(3): 125-138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34384726

RESUMEN

INTRODUCTION: Schizophrenia is a chronic illness often accompanied by metabolic disorders, diabetes, obesity and cardiovascular problems often associated with unhealthy lifestyles, as well as neuroendocrine problems caused by the disease itself. Lifestyle changes, such as regular physical exercise, have a positive effect on metabolic disorders and mental health, although the molecular changes that occur in this type of patient and how they explain the changes in their response are unknown. This study wants to analyze in a novel way the proteins and molecular pathways involved in critical plasmatic proteins in plasma to reveal the pathways involved in the implementation of physical exercise and the changes that occur among patients who participate in such programs with those who leave. METHODS: Twenty-one patients with chronic schizophrenia underwent a daily, 6-month aerobic training program. We divided them into a group that completed the program (12 patients) and a second group that left the training program (9 patients). The biochemical and clinical data of each patient were analyzed and the proteomic profile of the plasma was studied using ESI-LC-MS/MS. RESULTS: Proteomic analysis recognizes 21.165 proteins and peptides in each patient, of which we identified 1.812 proteins that varied between both groups linked to the metabolic and biological regulation pathways. After clinical analysis of each patient we found significant differences in weight, BMI, abdominal perimeter, diastolic blood pressure, and HDL cholesterol levels. The main change that vertebrates both groups is the Self-Assessment Anhedonia Scale, where we detected higher levels in the dropout group (no physical activity) compared to the active group. CONCLUSION: The benefits of physical exercise are clear in chronic patients with schizophrenia, as it substantially improves their BMI, as well as their clinical and biochemical parameters. However, our study reveals the biological and molecular pathways that affect physical exercise in schizophrenia, such as important metabolic proteins such as ApoE and ApoC, proteins involved in neuronal regulation such as tenascin and neurotrophins, neuroinflammatory regulatory pathways such as lipocalin-2 and protein 14-3-3, as well as cytoskeleton proteins of cells such as spectrins and annexines. Understanding these molecular mechanisms opens the door to future therapies in the chronicity of schizophrenia.


Asunto(s)
Esquizofrenia , Animales , Cromatografía Liquida , Ejercicio Físico , Humanos , Proyectos Piloto , Proteómica , Espectrometría de Masas en Tándem
9.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34445205

RESUMEN

The neurobiology of schizophrenia is multifactorial, comprising the dysregulation of several biochemical pathways and molecules. This research proposes a peripheral biomarker for schizophrenia that involves the second extracellular loop of norepinephrine transporter (NEText), the tropomyosin receptor kinase C (TrkC), and the neurotrophin-3 (NT-3) in T cells. The study of NEText, NT-3, and TrkC was performed in T cells and plasma extracted from peripheral blood of 54 patients with schizophrenia and 54 healthy controls. Levels of NT-3, TrkC, and NET were significantly lower in plasma and T cells of patients compared to healthy controls. Co-immunoprecipitation (co-IPs) showed protein interactions with Co-IP NEText-NT-3 and Co-IP NEText-TrkC. Computational modelling of protein-peptide docking by CABS-dock provided a medium-high accuracy model for NT-3-NEText (4.6935 Å) and TrkC-NEText (2.1365 Å). In summary, immunocomplexes reached statistical relevance in the T cells of the control group contrary to the results obtained with schizophrenia. The reduced expression of NT-3, TrkC, and NET, and the lack of molecular complexes in T cells of patients with schizophrenia may lead to a peripheral dysregulation of intracellular signaling pathways and an abnormal reuptake of norepinephrine (NE) by NET. This peripheral molecular biomarker underlying schizophrenia reinforces the role of neurotrophins, and noradrenergic and immune systems in the pathophysiology of schizophrenia.


Asunto(s)
Simulación del Acoplamiento Molecular , Neurotrofina 3/química , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/química , Receptor trkC/química , Esquizofrenia/etiología , Adulto , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Estructura Secundaria de Proteína , Receptor trkC/genética , Receptor trkC/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
10.
Front Psychiatry ; 11: 554899, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192668

RESUMEN

Duloxetine is a serotonin-norepinephrine reuptake inhibitor approved for the treatment of patients affected by major depressive disorder (MDD), generalized anxiety disorder (GAD), neuropathic pain (NP), fibromyalgia (FMS), and stress incontinence urinary (SUI). These conditions share parallel pathophysiological pathways, and duloxetine treatment might be an effective and safe alternative. Thus, a systematic review was conducted following the 2009 Preferred Reporting Items (PRISMA) recommendations and Joanna Briggs Institute Critical (JBI) Appraisals guidelines. Eighty-five studies focused on efficacy, safety, and tolerability of duloxetine were included in our systematic review. Studies were subdivided by clinical condition and evaluated individually. Thus, 32 studies of MDD, 11 studies of GAD, 19 studies of NP, 9 studies of FMS, and 14 studies of SUI demonstrated that the measured outcomes indicate the suitability of duloxetine in the treatment of these clinical conditions. This systematic review confirms that the dual mechanism of duloxetine benefits the treatment of comorbid clinical conditions, and supports the efficacy, safety, and tolerability of duloxetine in short- and long-term treatments.

11.
Sci Rep ; 10(1): 14271, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868793

RESUMEN

Schizophrenia is a progressive disorder characterized by multiple psychotic relapses. After every relapse, patients may not fully recover, and this may lead to a progressive loss of functionality. Pharmacological treatment represents a key factor to minimize the biological, psychological and psychosocial impact of the disorder. The number of relapses and the duration of psychotic episodes induce a potential neuronal damage and subsequently, neurodegenerative processes. Thus, a comparative study was performed, including forty healthy controls and forty-two SZ patients divided into first-episode psychosis (FEP) and chronic SZ (CSZ) subgroups, where the CSZ sub group was subdivided by antipsychotic treatment. In order to measure the potential neuronal damage, plasma levels of ß-III tubulin, neurofilament light chain (Nf-L), and glial fibrillary acidic protein (GFAP) were performed. The results revealed that the levels of these proteins were increased in the SZ group compared to the control group (P < 0.05). Moreover, multiple comparison analysis showed highly significant levels of ß-III tubulin (P = 0.0002), Nf-L (P = 0.0403) and GFAP (P < 0.015) in the subgroup of CSZ clozapine-treated. In conclusion, ß-III tubulin, Nf-L and GFAP proteins may be potential biomarkers of neurodegeneration and progression in SZ.


Asunto(s)
Encéfalo/patología , Proteína Ácida Fibrilar de la Glía/sangre , Proteínas de Neurofilamentos/sangre , Esquizofrenia/patología , Tubulina (Proteína)/sangre , Adulto , Antipsicóticos/uso terapéutico , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Escalas de Valoración Psiquiátrica , Esquizofrenia/sangre , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo
12.
Front Pharmacol ; 11: 557629, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973537

RESUMEN

Lithium has shown the capacity to: a) inhibit the replication of several types of viruses, some of which are similar to the SARS-CoV-2 virus, b) increase the immune response by reducing lymphopenia, and c) reduce inflammation by preventing or reducing the cytokine storm. In the present study, we have treated six patients with severe COVID-19 infection with lithium carbonate. We found that lithium carbonate significantly reduced plasma reactive C-Protein levels, increased lymphocyte numbers and decreased the neutrophil-lymphocyte ratio, improving both inflammatory activity and the immune response in these patients. We propose that lithium carbonate may deserve a place in the treatment against COVID-19.

13.
Clin EEG Neurosci ; 51(1): 3-9, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31537100

RESUMEN

Major depressive disorder (MDD) is a multidimensional disorder that is characterized by the presence of alterations in mood, cognitive capacity, sensorimotor, and homeostatic functions. Given that about half of the patients diagnosed with MDD do not respond to the various current treatments, new techniques are being sought to predict not only the course of the disease but also the characteristics that differentiate responders from non-responders. Using the electroencephalogram, a noninvasive and inexpensive tool, most studies have proposed that patients with MDD have some lateralization in brain electrical activity, with alterations in alpha and theta rhythms being observed, which would be related to dysfunctions in emotional capacity such as the absence or presence of responses to the different existing treatments. These alterations help in the identification of subjects at high risk of suffering from depression, in the differentiation into responders and nonresponders to various therapies (pharmacological, electroconvulsive therapy, and so on), as well as to establish in which period of the disease the treatment will be more effective. Although the data are still inconclusive and more research is needed, these alpha and theta neurophysiological markers could support future clinical practice when it comes to establishing an early diagnosis and treating state disorders more successfully and accurately of mood disorders.


Asunto(s)
Ondas Encefálicas/fisiología , Depresión/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Ritmo Teta/fisiología , Afecto/fisiología , Animales , Biomarcadores/análisis , Humanos
14.
Front Psychiatry ; 10: 885, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849731

RESUMEN

Schizophrenia is a severe and disabling psychiatric disorder with a complex and multifactorial etiology. The lack of consensus regarding the multifaceted dysfunction of this ailment has increased the need to explore new research lines. This research makes use of proteomics data to discover possible analytes associated with psychoneuroimmune signaling pathways in schizophrenia. Thus, we analyze plasma of 45 patients [10 patients with first-episode schizophrenia (FES) and 35 patients with chronic schizophrenia] and 43 healthy subjects by label-free liquid chromatography-tandem mass spectrometry. The analysis revealed a significant reduction in the levels of glia maturation factor beta (GMF-ß), the brain-derived neurotrophic factor (BDNF), and the 115-kDa isoform of the Rab3 GTPase-activating protein catalytic subunit (RAB3GAP1) in patients with schizophrenia as compared to healthy volunteers. In conclusion, GMF-ß, BDNF, and 115-kDa isoform of RAB3GAP1 showed significantly reduced levels in plasma of patients with schizophrenia, thus making them potential biomarkers in schizophrenia.

15.
J Psychiatr Res ; 106: 43-53, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30269004

RESUMEN

BACKGROUND: Schizophrenia is associated with patterns of aberrant neurobiological circuitry. The disease complexity is mirrored by multiple biological interactions known to contribute to the disease pathology. One potential contributor is the family of neurotrophins which are proteins involved in multiple functional processes in the nervous system, with crucial roles in neurodevelopment, synaptogenesis and neuroplasticity. With these roles in mind, abnormal neurotrophin profiles have been hypothesized to contribute to the pathology of schizophrenia. METHODS: We performed a systematic review and a meta-analysis to scrutinize the neurobiological hypothesis of neurotrophins in schizophrenia, examining the correlation between peripheral levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3) and neurotrophin 4/5 (NT-4/5) associated with schizophrenia. RESULTS: Fifty-two studies were reviewed and twenty-two studies were included in this meta-analysis. Using a random effects model, we confirmed that decreased levels of neurotrophins (BDNF, NGF and NT-4/5) were associated with schizophrenia (Hedges's g = -0.846; SE = 0.058; 95% confidence interval: -0.960 to -0.733; Z-value = -14.632; p-value = 0.000). Subgroup analysis indicated that neurotrophin levels are significantly decreased in both medicated and drug-näive patients. Meta-regression of continuous variables such as mean age, duration of illness and PANSS total score did not show significant effects (p > 0.05) in relation to neurotrophins levels. DISCUSSION: We confirm that decreased peripheral neurotrophin levels are significantly associated with schizophrenia, thereby confirming the neurobiological hypothesis of neurotrophins in schizophrenia. Low levels of neurotrophins in peripheral blood of patients with schizophrenia may explain, in part, the pathophysiology of schizophrenia.


Asunto(s)
Factores de Crecimiento Nervioso/sangre , Esquizofrenia/sangre , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
16.
World J Biol Psychiatry ; 19(8): 571-585, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29383983

RESUMEN

OBJECTIVES: Schizophrenia is a poorly understood chronic disease. Its pathophysiology is complex, dynamic, and linked to epigenetic mechanisms and microbiota involvement. Nowadays, correlating schizophrenia with the environment makes sense owing to its multidimensional implications: temporal and spatial variability. Microbiota involvement and epigenetic mechanisms are factors that are currently being considered to better understand another dimension of schizophrenia. METHODS: This review summarises and discusses currently available information, focussing on the microbiota, epigenetic mechanisms, technological approaches aimed at performing exhaustive analyses of the microbiota, and psychotherapies, to establish future perspectives. RESULTS: The connection between the microbiota, epigenetic mechanisms and technological developments allows for formulating new approaches objectively oriented towards the development of alternative psychotherapies that may help treat schizophrenia. CONCLUSIONS: In this review, the gut microbiota and epigenetic mechanisms were considered as key regulators, revealing a potential new aetiology of schizophrenia. Likewise, continuous technological advances (e.g. culturomics), aimed at the microbiota-gut-brain axis generate new evidence on this concept.


Asunto(s)
Epigénesis Genética , Microbioma Gastrointestinal , Esquizofrenia , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Humanos , Esquizofrenia/etiología , Esquizofrenia/inmunología , Esquizofrenia/metabolismo , Esquizofrenia/microbiología
17.
Schizophr Res ; 197: 19-33, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29239785

RESUMEN

INTRODUCTION: Schizophrenia is a multifactorial psychiatric disease with complex interactions among the brain and the immune system. A psycho-immune relationship underling schizophrenia is supported by several studies and integrates a specific area of knowledge - psychoneuroimmunology. METHODS: A systematic review was performed by 2009 Preferred Reporting Items (PRISMA) recommendations. Based on the inclusion/exclusion criteria, publications with relevant information (evaluated by the Joanna Briggs Institute Critical Appraisals tools to quality assessment) were included. RESULTS: In this review, we considered the inflammatory activity promoted by cytokine alterations in schizophrenia aetiology, which reflects the systemic comprehension of this disease in opposition to the traditional approach focused solely on the brain. We focus on the analysis of several specific outcomes, such as proinflammatory cytokines, sample sort, laboratory techniques, diagnosis scales and results of each publication. CONCLUSION: This systematic review confirms the existence of cytokines abnormalities in schizophrenia disease. Immune imbalances such as increased levels of some cytokines (either at protein level or at mRNA expression), cytokine mRNAs, as well as cytokine gene polymorphisms have been reported with a large support in schizophrenia. These findings provide a strong evidence of a concomitant process of inflammatory activity in schizophrenia illness course.


Asunto(s)
Citocinas/inmunología , Psiconeuroinmunología , Esquizofrenia/inmunología , Esquizofrenia/fisiopatología , Citocinas/genética , Humanos
18.
J Psychiatr Res ; 93: 37-49, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28578207

RESUMEN

OBJECTIVES: Understanding the biological process and progression of schizophrenia is the first step to developing novel approaches and new interventions. Research on new biomarkers is extremely important when the goal is an early diagnosis (prediction) and precise theranostics. The objective of this review is to understand the research on biomarkers and their effects in schizophrenia to synthesize the role of these new advances. METHODS: In this review, we search and review publications in databases in accordance with established limits and specific objectives. We look at particular endpoints such as the category of biomarkers, laboratory techniques and the results/conclusions of the selected publications. RESULTS: The investigation of biomarkers and their potential as a predictor, diagnosis instrument and therapeutic orientation, requires an appropriate methodological strategy. In this review, we found different laboratory techniques to identify biomarkers and their function in schizophrenia. CONCLUSION: The consolidation of this information will provide a large-scale application network of schizophrenia biomarkers.


Asunto(s)
Biomarcadores/metabolismo , Esquizofrenia/diagnóstico , Esquizofrenia/metabolismo , Bases de Datos Bibliográficas/estadística & datos numéricos , Progresión de la Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...