Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Data Brief ; 41: 107927, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35242911

RESUMEN

Bacteria of the genus Psychrobacter are known for their psychrophilic characteristics, being extremophilic organisms capable of surviving and reproducing in hostile environments of low temperature and high pressure. Among many of the genus characteristics, there is the ability to produce enzymes and molecules of industrial biotechnology importance, such as pigments and proteins related to heavy metal bioremediation. The bacterium strain Psychrobacter nivimaris LAMA 639 was isolated from sediments from the Walvis Ridge ocean crest at a depth of 4.400 m (33.40 S 2.35 E). It is a nonmotile, halotolerant, cream-colored gram-negative aerobic bacterium. Its cultivation was performed in marine agar plates and inoculated into test tubes with NaCl at an optimal temperature of 30 °C and with shaking at 100 rpm. Genome extraction was performed with the DNeasy Blood & Tissue Kit (QIAGEN®). Sequencing was performed by Macrogen using the NovaSeq® 6000 platform (Illumina) applying the whole genome shotgun (WGS) method. Thereafter, 14.712.526 reads of 151 bp were generated, totaling 2.2 G bp with a GC content of 42.9%. Assembly and mapping were performed with a CLC Genomics Workbench. The best assembly considered was the one with the lowest number of contigs and the highest base length pair. The assemblies were evaluated using QUAST, and the best resulting variant was selected for annotation. Genome annotation was performed with RAST and PATRIC; the antiSMASH tool was used for secondary metabolites; NaPDoS was used for domains; and three-dimensional structural prediction of relevant proteins was performed using Phyre2. Annotation with ClassicRAST generated 2,891 coding sequences (CDSs) distributed in 402 subsystems. Annotation with PATRIC generated 2,896 coding sequences, among them 776 hypothetical proteins. The antiSMASH tool visualized a beta-lactone cluster in contig 06. In the search for natural products with NaPDoS, two ketosynthase domains were identified. The search for relevant proteins was performed using the AMFEP list as a criterion. From these data, 34 possible enzymes with biotechnological potential were found. Finally, the organism is presented as a new reference regarding the potential of deep-sea marine bacteria, demonstrating that, from the annotated and cured genome, it is possible to find in its genetic repertory products of interest for biotechnological applications.

2.
Metabolites ; 11(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673148

RESUMEN

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.

3.
Bioorg Chem ; 100: 103921, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32464403

RESUMEN

Enterococci are gram-positive, widespread nosocomial pathogens that in recent years have developed resistance to various commonly employed antibiotics. Since finding new infection-control agents based on secondary metabolites from organisms has proved successful for decades, natural products are potentially useful sources of compounds with activity against enterococci. Herein are reported the results of a natural product library screening based on a whole-cell assay against a gram-positive model organism, which led to the isolation of a series of anacardic acids identified by analysis of their spectroscopic data and by chemical derivatizations. Merulinic acid C was identified as the most active anacardic acid derivative obtained against antibiotic-resistant enterococci. Fluorescence microscopy analyses showed that merulinic acid C targets the bacterial membrane without affecting the peptidoglycan and causes rapid cellular ATP leakage from cells. Merulinic acid C was shown to be synergistic with gentamicin against Enterococcus faecium, indicating that this compound could inspire the development of new antibiotic combinations effective against drug-resistant pathogens.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Enterococcus faecium/efectos de los fármacos , Gentamicinas/farmacología , Sinergismo Farmacológico , Enterococcus faecium/crecimiento & desarrollo , Enterococcus faecium/metabolismo , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Hidroxibenzoatos/farmacología
4.
Res Microbiol ; 170(1): 53-59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30003961

RESUMEN

Nine carbapenem-resistant Acinetobacter baumannii isolates carrying blaOXA-231 and an ISAba1 upstream occAB1 were evaluated. They were clonally related and belonged to ST107. An OXA-143-producing A. baumannii ST107 strain (Ac-148) that did not possess ISAba1 upstream occAB1 was included in the analysis. Reduction in the expression of occAB1 and a 4-fold increase of carbapenem MICs were observed for all isolates, except for the Ac-148 strain, probably due to the presence of ISAba1 upstream occAB1 but in the same transcriptional orientation. We reported an A. baumannii ST107 clone carrying blaOXA-143 that acquired a mutation resulting into blaOXA-231 and mobilized ISAba1 upstream occAB1.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/enzimología , Acinetobacter baumannii/genética , Proteínas Bacterianas/metabolismo , Elementos Transponibles de ADN , beta-Lactamasas/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , beta-Lactamasas/genética
5.
J Med Microbiol ; 65(6): 547-553, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27002853

RESUMEN

This study describes the molecular characteristics and risk factors associated with carbapenem-resistant Klebsiella pneumoniae strains. Risk factors associated with KPC-producing K. pneumoniae strains were investigated in this case-control study from May 2011 to May 2013. Bacterial identification was performed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility was determined by broth microdilution. Carbapenemase production was assessed by both modified Hodge test (MHT) and ertapenem hydrolysis using MALDI-TOF MS. The presence of ß-lactamase-encoding genes was evaluated by PCR and DNA sequencing. Alterations in genes encoding K. pneumoniae outer membrane proteins were analysed by PCR and DNA sequencing as well as SDS-PAGE. Genetic relatedness among strains was determined by pulsed-field gel electrophoresis. This study included 94 patients. Longer hospitalisation, mechanical ventilation, catheters, and previous surgery were associated with KPC-producing K. pneumoniae. Sixty-eight strains showed resistance to carbapenems. Carbapenemase production was detected by MHT in 67 K. pneumoniae strains and by MALDI-TOF MS in 57. The presence of the blaKPC-2 gene was identified in 57 strains. The blaKPC-2 gene was not found in 11 carbapenem-resistant K. pneumoniae; instead, the blaCTX-M-1-like, blaCTX-M-2-like, blaCTX-M-8 like, blaCTX-M-14-like and blaSHV- like genes associated with OmpK35 and OmpK36 alterations were observed. Thirty-three KPC-producing K. pneumoniae strains were clonally related, and patients infected with these strains had a higher mortality rate (78.78 %). Our results show that KPC-producing K. pneumoniae was associated with several healthcare-related risk factors, including recent surgery.


Asunto(s)
Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/enzimología , Infección de la Herida Quirúrgica/microbiología , beta-Lactamasas/metabolismo , Estudios de Casos y Controles , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Persona de Mediana Edad , Factores de Riesgo , beta-Lactamasas/genética
7.
J Clin Microbiol ; 53(7): 2324-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25878341
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA