Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37446965

RESUMEN

The appearance of water stress episodes triggers leaf abscission and decreases Ilex paraguariensis yield. To explore the mechanisms that allow it to overcome dehydration, we investigated how the root gene expression varied between water-stressed and non-stressed plants and how the modulation of gene expression was linked to metabolite composition and physiological status. After water deprivation, 5160 differentially expressed transcripts were obtained through RNA-seq. The functional enrichment of induced transcripts revealed significant transcriptional remodelling of stress-related perception, signalling, transcription, and metabolism. Simultaneously, the induction of the enzyme 9-cis-expoxycarotenoid dioxygenase (NCED) transcripts reflected the central role of the hormone abscisic acid in this response. Consequently, the total content of amino acids and soluble sugars increased, and that of starch decreased. Likewise, osmotic adjustment and radical growth were significantly promoted to preserve cell membranes and water uptake. This study provides a valuable resource for future research to understand the molecular adaptation of I. paraguariensis plants under drought conditions and facilitates the exploration of drought-tolerant candidate genes.

2.
J Exp Bot ; 73(12): 4113-4128, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35383842

RESUMEN

Auxin is an important hormone playing crucial roles during fruit growth and ripening; however, the metabolic impact of changes in auxin signalling during tomato (Solanum lycopersicum L.) ripening remains unclear. Here, we investigated the significance of changes in auxin signalling during different stages of fruit development by analysing changes in tomato fruit quality and primary metabolism using mutants with either lower or higher auxin sensitivity [diageotropica (dgt) and entire mutants, respectively]. Altered auxin sensitivity modifies metabolism, through direct impacts on fruit respiration and fruit growth. We verified that the dgt mutant plants exhibit reductions in fruit set, total fruit dry weight, fruit size, number of seeds per fruit, and fresh weight loss during post-harvest. Sugar accumulation was associated with delayed fruit ripening in dgt, probably connected with reduced ethylene levels and respiration, coupled with a lower rate of starch degradation. In contrast, despite exhibiting parthenocarpy, increased auxin perception (entire) did not alter fruit ripening, leading to only minor changes in primary metabolism. By performing a comprehensive analysis, our results connect auxin signalling and metabolic changes during tomato fruit development, indicating that reduced auxin signalling led to extensive changes in sugar concentration and starch metabolism during tomato fruit ripening.


Asunto(s)
Solanum lycopersicum , Ciclofilinas/genética , Etilenos/metabolismo , Frutas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Azúcares/metabolismo
3.
Plant Physiol Biochem ; 171: 14-25, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34968988

RESUMEN

Although Macauba (Acrocomia aculeata) has been highlighted by its high-quality oil to fit edible and nonedible purposes, data addressing carbon and nitrogen metabolism underlying development and ripening of fruits remain scarce. In addition, accessions of Macauba exibit varied oil yield in fruits, including during the fruit development stages. Here, we monitored contents of carbohydrates, proteins, amino acids and lipids in the mesocarp and endosperm of Macauba fruits until ripening. We selected three accessions from different Brazilian regions (southeast, MG; northeast, PE; and central-west, MS) that differ in the mesocarp lipid content of ripe fruits. Despite the anatomical differences, mesocarp and endosperm exhibited similar trends of metabolite accumulation for most of the analyzed compounds. In the mesocarp, total soluble protein, free amino acids, sucrose, starch and total lipids accumulate towards ripening, while glucose and fructose declined in all accessions. Endosperm differed from mesocarp solely in the amino acid content, which decreased in ripe fruits. In the endosperm, accessions accumulated carbohydrates differently. Accession PE showed comparable fructose and starch contents in the endosperm between the beginning of fruit development and ripening, while in accessions MG and MS, both compounds decreased and increased, respectively, towards ripening. Accession MG was highlighted by its highest lipid content in the two tissues indicating its potential for energy and cosmetic industries. Our results provide novel insights into metabolic changes underlying development and ripening of Macauba fruits and variability in oil content among accessions, indicating new targets for breeding programs.


Asunto(s)
Arecaceae , Frutas , Carbohidratos , Endospermo , Lípidos
4.
Food Chem ; 375: 131850, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34953242

RESUMEN

Fruit pungency is caused by the accumulation of capsaicinoids, secondary metabolites whose relation to primary metabolism remains unclear. We have selected ten geographically diverse accessions of Capsicum chinense Jacq with different pungency levels. A detailed metabolic profile was conducted in the fruit placenta and pericarp at 20, 45, and 60 days after anthesis aiming at increasing our understanding of the metabolic changes in these tissues across fruit development and their potential connection to capsaicin metabolism. Overall, despite the variation in fruit pungency among the ten accessions, the composition and metabolite levels in both placenta and pericarp were uniformly stable across accessions. Most of the metabolite variability occurred between the fruit developmental stages rather than among the accessions. Interestingly, different metabolite adjustments in the placenta were observed among pungent and non-pungent accessions, which seem to be related to differences in the genetic background. Furthermore, we observed high coordination between metabolites and capsaicin production in C. chinense fruits, suggesting that pungency in placenta is adjusted with primary metabolism.


Asunto(s)
Capsicum , Piper nigrum , Capsaicina/análisis , Frutas/química , Reproducción
5.
Plant Cell Environ ; 42(2): 448-465, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30066402

RESUMEN

Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica-dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin-sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Mitocondrias/metabolismo , Fotosíntesis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/crecimiento & desarrollo , Clorofila/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Hojas de la Planta/anatomía & histología , Estomas de Plantas/fisiología , Transducción de Señal/fisiología , Agua/metabolismo
6.
Plant Physiol Biochem ; 124: 136-145, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29360623

RESUMEN

Drought stress is the most important stress factor for plants, being the main cause of agricultural crop loss in the world. Plants have developed complex mechanisms for preventing water loss and oxidative stress such as synthesis of abscisic acid (ABA) and non-enzymatic antioxidant compounds such as anthocyanins, which might help plants to cope with abiotic stress as antioxidants and for scavenging reactive oxygen species. A. chilensis (Mol.) is a pioneer species, colonizing and growing on stressed and disturbed environments. In this research, an integrated analysis of secondary metabolism in Aristotelia chilensis was done to relate ABA effects on anthocyanins biosynthesis, by comparing between young and fully-expanded leaves under drought stress. Plants were subjected to drought stress for 20 days, and physiological, biochemical, and molecular analyses were performed. The relative growth rate and plant water status were reduced in stressed plants, with young leaves significantly more affected than fully-expanded leaves beginning from the 5th day of drought stress. A. chilensis plants increased their ABA and total anthocyanin content and showed upregulation of gene expression when they were subjected to severe drought (day 20), with these effects being higher in fully-expanded leaves. Multivariate analysis indicated a significant positive correlation between transcript levels for NCED1 (9-cis-epoxycarotenoid dioxygenase) and UFGT (UDP glucose: flavonoid-3-O-glucosyltransferase) with ABA and total anthocyanin, respectively. Thus, this research provides a more comprehensive analysis of the mechanisms that allow plants to cope with drought stress. This is highlighted by the differences between young and fully-expanded leaves, showing different sensibility to stress due to their ability to synthesize anthocyanins. In addition, this ability to synthesize different and high amounts of anthocyanins could be related to higher NCED1 and MYB expression and ABA levels, enhancing drought stress tolerance.


Asunto(s)
Ácido Abscísico/biosíntesis , Antocianinas/biosíntesis , Magnoliopsida/metabolismo , Estrés Oxidativo , Hojas de la Planta/metabolismo , Deshidratación/metabolismo
7.
Plant Physiol Biochem ; 113: 89-97, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28189921

RESUMEN

We studied resistance to manganese (Mn) toxicity under acidic conditions and its relationship with nutrients such as calcium (Ca) and magnesium (Mg) in new perennial ryegrass (Lolium perenne L.) genotypes (One-50, Banquet-II and Halo-AR1) introduced in southern Chile, using the Nui genotype as the reference. Plants were grown in nutrient solution at increased Mn concentrations (0-750 µM) at pH 4.8, and physiological and biochemical features were determined. Under higher Mn concentration, the One-50 genotype had a significantly lower relative growth rate (RGR) of shoots and roots, whereas in the other cultivars this parameter did not change under variable Mn treatments. Increasing the Mn concentration led to an increased Mn concentration in roots and shoots, with Banquet-II and Halo-AR1 having higher Mn in roots than shoots. Shoot Mg and Ca concentrations in all genotypes (except Banquet-II) decreased concomitantly with increasing Mn applications. In contrast to the other genotypes, Banquet-II and Halo-AR1 maintained their net CO2 assimilation rate regardless of Mn treatment, whereas the chlorophyll concentration decreased in all genotypes with the exception of Banquet-II. In addition, lipid peroxidation in Banquet-II roots increased at 150 µM Mn, but decreased at higher Mn concentrations. This decrease was associated with an increase in antioxidant capacity as well as total phenol concentration. Banquet-II and Halo-AR1 appear to be the most Mn-resistant genotypes based on RGR and CO2 assimilation rate. In addition, Mn excess provoked a strong decrease in Ca and Mg concentrations in shoots of the Mn-sensitive genotype, whereas only slight variations in the Mn-resistant genotype were noted. When other evaluated parameters were taken into account, we concluded that among the perennial ryegrass genotypes introduced recently into southern Chile Banquet-II appears to be the most Mn-resistant, followed by Halo-AR1, with One-50 being the most sensitive.


Asunto(s)
Lolium/efectos de los fármacos , Lolium/fisiología , Manganeso/toxicidad , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Antioxidantes/metabolismo , Calcio/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Depuradores de Radicales Libres/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genotipo , Peroxidación de Lípido/efectos de los fármacos , Fotosíntesis , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...