Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Diabetologia ; 67(2): 333-345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897566

RESUMEN

AIMS/HYPOTHESIS: We aimed to investigate the association between the abundance of Dysosmobacter welbionis, a commensal gut bacterium, and metabolic health in human participants with obesity and diabetes, and the influence of metformin treatment and prebiotic intervention. METHODS: Metabolic variables were assessed and faecal samples were collected from 106 participants in a randomised controlled intervention with a prebiotic stratified by metformin treatment (Food4Gut trial). The abundance of D. welbionis was measured by quantitative PCR and correlated with metabolic markers. The in vitro effect of metformin on D. welbionis growth was evaluated and an in vivo study was performed in mice to investigate the effects of metformin and D. welbionis J115T supplementation, either alone or in combination, on metabolic variables. RESULTS: D. welbionis abundance was unaffected by prebiotic treatment but was significantly higher in metformin-treated participants. Responders to prebiotic treatment had higher baseline D. welbionis levels than non-responders. D. welbionis was negatively correlated with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and fasting blood glucose levels in humans with obesity and type 2 diabetes. In vitro, metformin had no direct effect on D. welbionis growth. In mice, D. welbionis J115T treatment reduced body weight gain and liver weight, and improved glucose tolerance to a better level than metformin, but did not have synergistic effects with metformin. CONCLUSIONS/INTERPRETATION: D. welbionis abundance is influenced by metformin treatment and associated with prebiotic response, liver health and glucose metabolism in humans with obesity and diabetes. This study suggests that D. welbionis may play a role in metabolic health and warrants further investigation. CLINICAL TRIAL: NCT03852069.


Asunto(s)
Clostridiales , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Animales , Ratones , Metformina/uso terapéutico , Metformina/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Dieta Alta en Grasa
2.
HardwareX ; 15: e00462, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37600064

RESUMEN

Preparative liquid chromatography is a technique for separating complex samples or isolating pure compounds from complex extracts. It involves eluting samples through a packed column and selectively collecting or isolating the separated bands in a sequence of fractions. Depending on the column length and the sample complexity, a large number of fractions may be obtained, making fraction collection a laborious and time-consuming process. Manual fraction collection is also tedious, error-prone, less reproducible, and susceptible to contamination. Several commercial and lab-made solutions are available for automated fraction collection, but most systems do not synchronize with the instrument detector and collect fractions at fixed volumes or time intervals. We have assembled a low-cost Arduino-based smart fraction collector that can record the signal from the UV-vis detector of the chromatography instrument and enable the automated selective collection of the targeted bands. The system consists of a robot equipped with position sensors and a 3-way solenoid valve that switches the column effluent between the waste or collection positions. By proper programming, an Arduino board records the detector response and actuates the solenoid valve, the position sensors, and the stepper motors to collect the target chromatographic bands.

3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36499011

RESUMEN

Gut microbiota alterations are intimately linked to chronic constipation upon aging. We investigated the role of targeted changes in the gut microbiota composition in the relief of constipation symptoms after rhubarb extract (RE) supplementation in middle-aged volunteers. Subjects (95% women, average 58 years old) were randomized to three groups treated with RE at two different doses determined by its content of rhein (supplementation of 12.5 mg and 25 mg per day) vs. placebo (maltodextrin) for 30 days. We demonstrated that daily oral supplementation of RE for 30 days was safe even at the higher dose. Stool frequency and consistency, and perceived change in transit problem, transit speed and difficulty in evacuating, investigated by validated questionnaires, were improved in both groups of RE-treated volunteers compared to placebo. Higher abundance of Lachnospiraceae (mainly Roseburia and Agathobacter) only occurred after RE treatment when present at low levels at baseline, whereas an opposite shift in short-chain fatty acid (SCFA) levels was observed in both RE-treated groups (increase) and placebo (decrease). Fecal Lachnospiraceae and SCFA were positively correlated with stool consistency. This study demonstrates that RE supplementation promotes butyrate-producing bacteria and SCFA, an effect that could contribute to relieving chronic constipation in middle-aged persons.


Asunto(s)
Microbioma Gastrointestinal , Rheum , Adulto , Persona de Mediana Edad , Humanos , Femenino , Masculino , Estreñimiento/microbiología , Ácidos Grasos Volátiles/farmacología , Heces/microbiología , Clostridiales , Método Doble Ciego
4.
Energy Fuels ; 36(19): 12010-12020, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36250135

RESUMEN

Hydrothermal liquefaction (HTL) can thermochemically transform sewage sludge into a biocrude with high energy content, high chemical complexity, and high O and N content. The development of an efficient upgrading process for such complex feedstocks necessitates detailed knowledge of the molecular composition and the specific heteroatom-containing compounds to understand and optimize the hydrotreating reactions. In this study, we present the upgrading of sewage sludge-derived HTL biocrude via a two-stage hydrotreatment process and perform advanced chemical characterization of the feedstock, intermediate, and final upgraded products with gas chromatography-mass spectrometry (GC-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). We show that hydrotreatment significantly improves the quality of the oil, primarily succeeding in cracking the heavy molecules and removing the sulfur- and oxygen-containing components. FTICR-MS analysis shows that the HTL biocrude has a high concentration of fatty acid amides that readily lose their oxygen and nitrogen during hydrotreating and are converted into saturated hydrocarbons, whereas the aromatic OxNy compounds are converted into N1 and N2 classes, which are more resistant to hydrotreating. We also demonstrate that the upgraded HTL oil can be successfully blended with intermediate refinery streams, such as vacuum gas oil (VGO), for further co-processing to in-spec fuels in conventional processes. This provides an alternative route to introduce renewable carbon in existing fossil-based refineries.

5.
Sci Rep ; 12(1): 8830, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614185

RESUMEN

Chitin-glucan (CG), an insoluble dietary fiber, has been shown to improve cardiometabolic disorders associated with obesity in mice. Its effects in healthy subjects has recently been studied, revealing its interaction with the gut microbiota. In this double-blind, randomized, cross-over, twice 3-week exploratory study, we investigated the impacts of CG on the cardiometabolic profile and gut microbiota composition and functions in 15 subjects at cardiometabolic risk. They consumed as a supplement 4.5 g of CG daily or maltodextrin as control. Before and after interventions, fasting and postprandial metabolic parameters and exhaled gases (hydrogen [H2] and methane [CH4]) were evaluated. Gut microbiota composition (16S rRNA gene sequencing analysis), fecal concentrations of bile acids, long- and short-chain fatty acids (LCFA, SCFA), zonulin, calprotectin and lipopolysaccharide binding protein (LBP) were analyzed. Compared to control, CG supplementation increased exhaled H2 following an enriched-fiber breakfast ingestion and decreased postprandial glycemia and triglyceridemia response to a standardized test meal challenge served at lunch. Of note, the decrease in postprandial glycemia was only observed in subjects with higher exhaled H2, assessed upon lactulose breath test performed at inclusion. CG decreased a family belonging to Actinobacteria phylum and increased 3 bacterial taxa: Erysipelotrichaceae UCG.003, Ruminococcaceae UCG.005 and Eubacterium ventriosum group. Fecal metabolites, inflammatory and intestinal permeability markers did not differ between groups. In conclusion, we showed that CG supplementation modified the gut microbiota composition and improved postprandial glycemic response, an early determinant of cardiometabolic risk. Our results also suggest breath H2 production as a non-invasive parameter of interest for predicting the effectiveness of dietary fiber intervention.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Humanos , Bacterias , Glucemia/análisis , Quitina/metabolismo , Fibras de la Dieta/análisis , Suplementos Dietéticos , Heces/microbiología , Glucanos/metabolismo , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética
6.
Electrophoresis ; 43(15): 1577-1586, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567289

RESUMEN

A fast and environment-friendly analytical method was implemented to determine multiclass pesticides in river sediments. Twenty-three pesticides-organochlorine pesticides, organophosphorus pesticides, and triazines-were extracted via matrix solid-phase dispersion (MSPD) and analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). Florisil demonstrated excellent analytes uptake capability as the extractant phase, with suitable selectivity for treating complex sediment samples. Under defined extraction conditions, the MSPD-GC-MS/MS method demonstrated robustness in the n inter-day analysis of sediments from different sources, providing limit of quantifications (LOQs) between 5 and 15 ng/g, linear responses in the range between LOQs and 150 ng/g, extraction recoveries of 71%-106%, and precision, assessed as relative standard deviation below 20%. The MSPD significantly reduced samples and solvents' consumption, providing critical environmental gains compared to traditional extraction methods like Soxhlet. Finally, the method was applied to analyze sediment samples from three different collection areas of the Subachoque River (Cundinamarca, Colombia), demonstrating a fast, efficient, confident, and profitable analytical tool for pollution control and monitoring in environmental samples. The method allowed us to determine the current use in Colombia of banned pesticides under the 2001 Stockholm Convention.


Asunto(s)
Plaguicidas , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Organofosforados/análisis , Plaguicidas/análisis , Ríos , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos
7.
Electrophoresis ; 43(15): 1567-1576, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567359

RESUMEN

Dynamic single-drop microextraction (SDME) was automatized employing an Arduino-based lab-made Cartesian robot and implemented to determine parabens in wastewater samples in combination with liquid chromatography-tandem mass spectrometry. A dedicated Arduino sketch controls the auto-performance of all the stages of the SDME process, including syringe filling, drop exposition, solvent recycling, and extract collection. Univariate and multivariate experiments investigated the main variables affecting the SDME performance, including robot-dependent and additional operational parameters. Under selected conditions, limit of detections were established at 0.3 µg/L for all the analytes, and the method provided linear responses in the range between 0.6 and 10 µg/L, with adequate reproducibility, measured as intraday relative standard deviations (RSDs) between 5.54% and 17.94%, (n = 6), and inter-days RSDs between 8.97% and 16.49% (n = 9). The robot-assisted technique eased the control of dynamic SDME, making the process more feasible, robust, and reliable so that the developed setup demonstrated to be a competitive strategy for the automated extraction of organic pollutants from water samples.


Asunto(s)
Microextracción en Fase Líquida , Robótica , Contaminantes Químicos del Agua , Cromatografía Liquida , Microextracción en Fase Líquida/métodos , Parabenos/análisis , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
8.
EBioMedicine ; 80: 104051, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35561452

RESUMEN

BACKGROUND: Current data suggest that dietary fibre (DF) interaction with the gut microbiota largely contributes to their physiological effects. The bacterial fermentation of DF leads to the production of metabolites, most of them are volatile. This study analyzed the breath volatile metabolites (BVM) profile in healthy individuals (n=15) prior and after a 3-week intervention with chitin-glucan (CG, 4.5 g/day), an insoluble fermentable DF. METHODS: The present exploratory study presents the original data related to the secondary outcomes, notably the analysis of BVM. BVM were analyzed throughout the test days -in fasting state and after standardized meals - using selected ion flow tube mass spectrometry (SIFT-MS). BVM production was correlated to the gut microbiota composition (Illumina sequencing, primary outcome), analyzed before and after the intervention. FINDINGS: The data reveal that the post-prandial state versus fasting state is a key determinant of BVM fingerprint. Correlation analyses with fecal microbiota spotlighted butyrate-producing bacteria, notably Faecalibacterium, as dominant bacteria involved in butyrate and other BVM expiration. CG intervention promotes interindividual variations of fasting BVM, and decreases or delays the expiration of most exhaled BVM in favor of H2 expiration, without any consequence on gastrointestinal tolerance. INTERPRETATION: Assessing BVM is a non-invasive methodology allowing to analyze the influence of DF intervention on the gut microbiota. FUNDING: FiberTAG project was initiated from a European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL) and was supported by the Service Public de Wallonie (SPW-EER, convention 1610365, Belgium).


Asunto(s)
Microbioma Gastrointestinal , Bacterias/metabolismo , Butiratos/metabolismo , Fibras de la Dieta/metabolismo , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Voluntarios Sanos , Humanos , Metaboloma
9.
Handb Exp Pharmacol ; 274: 57-73, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35434750

RESUMEN

The prevalence of overweight and obesity has reached epidemic proportions globally over the past few decades. The search for new management approaches continues and among them, targeting the gut microbiota can be envisioned. To date, numerous data showed the involvement of the gut microbes in the regulation and control of host metabolism. There are also increasing evidences highlighting the interactions between environmental factors, intrinsic factors, gut microbiota, and metabolic diseases. Diet emerges as the most relevant factor influencing the gut microbiome. Eating habits, as well as short-term consumption of specific diets, alter the gut microbiota composition. Moreover, nutritional disorders are associated with changes of the gut microbiota composition and/or function, as shown in obesity or type 2 diabetic patients versus healthy lean subjects. Targeting the gut microbiota for improving metabolic health appears as a new approach to manage obesity and cardio-metabolic risk. In this review, we have detailed the results of human interventions targeting the gut microbiome by prebiotic supplementation, prebiotics being defined as "substrates that are selectively utilized by the host microorganisms conferring a health benefit." If the potential benefit of this approach is obvious in preclinical models, the efficacy of prebiotics in humans is less reproducible. The inter-individual variability of response to dietary intervention can be dependent on the gut microbiota and we summarized the basal gut microbiota characteristics driving the metabolic response to dieting, prebiotic and dietary fiber intervention in the context of obesity and related metabolic diseases.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Fibras de la Dieta , Microbioma Gastrointestinal/fisiología , Humanos , Obesidad/metabolismo , Prebióticos
10.
BMC Med ; 20(1): 110, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35351144

RESUMEN

BACKGROUND: Dietary interventions targeting the gut microbiota have been proposed as innovative strategies to improve obesity-associated metabolic disorders. Increasing physical activity (PA) is considered as a key behavioral change for improving health. We have tested the hypothesis that changing the PA status during a nutritional intervention based on prebiotic supplementation can alter or even change the metabolic response to the prebiotic. We confirm in obese subjects and in high-fat diet fed mice that performing PA in parallel to a prebiotic supplementation is necessary to observe metabolic improvements upon inulin. METHODS: A randomized, single-blinded, multicentric, placebo-controlled trial was conducted in obese participants who received 16 g/day native inulin versus maltodextrin, coupled to dietary advice to consume inulin-rich versus -poor vegetables for 3 months, respectively, in addition to dietary caloric restriction. Primary outcomes concern the changes on the gut microbiota composition, and secondary outcomes are related to the measures of anthropometric and metabolic parameters, as well as the evaluation of PA. Among the 106 patients who completed the study, 61 patients filled a questionnaire for PA before and after intervention (placebo: n = 31, prebiotic: n = 30). Except the dietitian (who provided dietary advices and recipes book), all participants and research staff were blinded to the treatments and no advices related to PA were given to participants in order to change their habits. In parallel, a preclinical study was designed combining both inulin supplementation and voluntary exercise in a model of diet-induced obesity in mice. RESULTS: Obese subjects who increased PA during a 3 months intervention with inulin-enriched diet exhibited several clinical improvements such as reduced BMI (- 1.6 kg/m2), decreased liver enzymes and plasma cholesterol, and improved glucose tolerance. Interestingly, the regulations of Bifidobacterium, Dialister, and Catenibacterium genera by inulin were only significant when participants exercised more. In obese mice, we highlighted a greater gut fermentation of inulin and improved glucose homeostasis when PA is combined with prebiotics. CONCLUSION: We conclude that PA level is an important determinant of the success of a dietary intervention targeting the gut microbiota. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03852069 (February 22, 2019 retrospectively registered).


Asunto(s)
Inulina , Obesidad , Animales , Índice de Masa Corporal , Dieta Alta en Grasa , Ejercicio Físico , Humanos , Inulina/farmacología , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
11.
JHEP Rep ; 3(4): 100323, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34355155

RESUMEN

BACKGROUND & AIMS: Retrospective cross-sectional studies linked sarcopenia and myosteatosis with metabolic dysfunction-associated fatty liver disease (MAFLD). Here, we wanted to clarify the dynamic relationship between sarcopenia, myosteatosis, and MAFLD. METHODS: A cohort of 48 obese patients was randomised for a dietary intervention consisting of 16 g/day of inulin (prebiotic) or maltodextrin (placebo) supplementation. Before and after the intervention, we evaluated liver steatosis and stiffness with transient elastography (TE); we assessed skeletal muscle index (SMI) and skeletal muscle fat index (SMFI) (a surrogate for absolute fat content in muscle) using computed tomography (CT) and bioelectrical impedance analysis (BIA). RESULTS: At baseline, sarcopenia was uncommon in patients with MAFLD (4/48, 8.3%). SMFI was higher in patients with high liver stiffness than in those with low liver stiffness (640.6 ± 114.3 cm2/ Hounsfield unit [HU] vs. 507.9 ± 103.0 cm2/HU, p = 0.001). In multivariate analysis, SMFI was robustly associated with liver stiffness even when adjusted for multiple confounders (binary logistic regression, p <0.05). After intervention, patients with inulin supplementation lost weight, but this was not associated with a decrease in liver stiffness. Remarkably, upon intervention (being inulin or maltodextrin), patients who lowered their SMFI, but not those who increased SMI, had a 12.7% decrease in liver stiffness (before = 6.36 ± 2.15 vs. after = 5.55 ± 1.97 kPa, p = 0.04). CONCLUSIONS: Myosteatosis, but not sarcopenia, is strongly and independently associated with liver stiffness in obese patients with MAFLD. After intervention, patients in which the degree of myosteatosis decreased reduced their liver stiffness, irrespective of body weight loss or prebiotic treatment. The potential contribution of myosteatosis to liver disease progression should be investigated. CLINICAL TRIALS REGISTRATION NUMBER: NCT03852069. LAY SUMMARY: The fat content in skeletal muscles (or myosteatosis) is strongly associated with liver stiffness in obese patients with MAFLD. After a dietary intervention, patients in which the degree of myosteatosis decreased also reduced their liver stiffness. The potential contribution of myosteatosis to liver disease progression should be investigated.

12.
Sci Total Environ ; 797: 148895, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34346368

RESUMEN

With the increasing demand for alternative solutions to replace or optimize the use of synthetic fertilizers and pesticides, the inoculation of bacteria that can contribute to the growth and health of plants (PGPR) is essential. The properties classically sought in PGPR are the production of phytohormones and other growth-promoting molecules, and more rarely the production of exopolysaccharides. We compared the effect of two strains of exopolysaccharide-producing Rhizobium alamii on rapeseed grown in a calcareous silty-clay soil under water stress conditions or not. The effect of factors 'water stress' and 'inoculation' were evaluated on plant growth parameters and the diversity of microbiota associated to root and root-adhering soil compartments. Water stress resulted in a significant decrease in leaf area, shoot biomass and RAS/RT ratio (root-adhering soil/root tissues), as well as overall beta-diversity. Inoculation with R. alamii YAS34 and GBV030 under water-stress conditions produced the same shoot dry biomass compared to uninoculated treatment in absence of water stress, and both strains increased shoot biomass under water-stressed conditions (+7% and +15%, respectively). Only R. alamii GBV030 significantly increased shoot biomass under unstressed or water-stressed conditions compared to the non-inoculated control (+39% and +15%, respectively). Alpha-diversity of the root-associated microbiota after inoculation with R. alamii YAS34 was significantly reduced. Beta-diversity was significantly modified after inoculation with R. alamii GBV030 under unstressed conditions. LEfSe analysis identified characteristic bacterial families, Flavobacteriaceae and Comamonadaceae, in the RT and RAS compartments for the treatment inoculated by R. alamii GBV030 under unstressed conditions, as well as Halomonadaceae (RT) and several species belonging to Actinomycetales (RAS). We showed that R. alamii GBV030 had a PGPR effect on rapeseed growth, increasing its tolerance to water stress, probably involving its capacity to produce exopolysaccharides, and other plant growth-promoting (PGP) traits.


Asunto(s)
Rhizobium , Agua , Deshidratación , Humanos , Raíces de Plantas , Microbiología del Suelo
13.
Nutrients ; 13(5)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923174

RESUMEN

Berberine and curcumin, used as food additives or food supplements, possess interesting anti-inflammatory and antioxidant properties. We tested the potential protective effect of both phytochemicals in genetically obese mice and we determined whether these effects can be related to the modulation of gut functions and microbiota. Ob/ob mice were fed a standard diet supplemented with or without 0.1% berberine and/or 0.3% curcumin for 4 weeks. By using targeted qPCR, we found that cecal content of Bifidobacterium spp. and Akkermansia spp. increased mainly upon berberine supplementation. Genes involved in innate immunity (Pla2g2a), mucus production (Muc2) and satietogenic peptide production (Gcg and Pyy) were upregulated in the colon of mice treated with both phytochemicals. Berberine supplementation alone reduced food intake, body weight gain, hypertriglyceridemia and hepatic inflammatory and oxidative stress markers, thus lessening hepatic injury. The increase in Bifidobacterium spp. and Akkermansia spp. was correlated with the improvement of gut barrier function and with the improvement of hepatic inflammatory and oxidative stresses in obese mice. These data support the fact that non-carbohydrate phytochemicals may modulate the gut microbiota in obesity and related gut and hepatic alterations.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Berberina/farmacología , Curcumina/farmacología , Obesidad/tratamiento farmacológico , Prebióticos/administración & dosificación , Animales , Masculino , Ratones , Ratones Obesos
15.
J Nutr ; 151(6): 1507-1516, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33693866

RESUMEN

BACKGROUND: The gut microbiota plays a role in the occurrence of nonalcoholic fatty liver disease (NAFLD), notably through the production of bioactive metabolites. Indole, a bacterial metabolite of tryptophan, has been proposed as a pivotal metabolite modulating inflammation, metabolism, and behavior. OBJECTIVES: The aim of our study was to mimic an upregulation of intestinal bacterial indole production and to evaluate its potential effect in vivo in 2 models of NAFLD. METHODS: Eight-week-old leptin-deficient male ob/ob compared with control ob/+ mice (experiment 1), and 4-5-wk-old C57BL/6JRj male mice fed a low-fat (LF, 10 kJ%) compared with a high-fat (HF, 60 kJ%) diet (experiment 2), were given plain water or water supplemented with a physiological dose of indole (0.5 mM, n ≥6/group) for 3 wk and 3 d, respectively. The effect of the treatments on the liver, intestine, adipose tissue, brain, and behavior was assessed. RESULTS: Indole reduced hepatic expression of genes involved in inflammation [C-C motif chemokine ligand 2 (Ccl2), C-X-C motif chemokine ligand 2 (Cxcl2); 3.3- compared with 5.0-fold, and 2.4- compared with 3.3-fold of control ob/+ mice, respectively, P < 0.05], and in macrophage activation [Cd68, integrin subunit α X (Itgax); 2.1- compared with 2.5-fold, and 5.0- compared with 6.4-fold of control ob/+ mice, respectively, P < 0.01] as well as markers of hepatic damage (alaninine aminotransferase; -32%, P < 0.001) regardless of genotype in experiment 1. Indole had no effect on hepatic inflammation in mice fed the LF or HF diet in experiment 2. Indole did not change hepatic lipid content, anxiety-like behavior, or inflammation in the ileum, adipose tissue, and brain in experiment 1. CONCLUSIONS: Our results support the efficacy of indole to reduce hepatic damage and associated inflammatory response and macrophage activation in ob/ob mice. These modifications appear to be attributable to direct effects of indole on the liver, rather than through effects on the adipose tissue or intestinal barrier.


Asunto(s)
Microbioma Gastrointestinal , Indoles , Leptina/deficiencia , Enfermedad del Hígado Graso no Alcohólico , Animales , Quimiocina CCL2 , Quimiocina CXCL2 , Dieta Alta en Grasa , Indoles/farmacología , Inflamación , Ligandos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Sustancias Protectoras/farmacología
16.
Eur J Nutr ; 60(6): 3159-3170, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33544206

RESUMEN

PURPOSE: Inulin-type fructans (ITF) are prebiotic dietary fibre (DF) that may confer beneficial health effects, by interacting with the gut microbiota. We have tested the hypothesis that a dietary intervention promoting inulin intake versus placebo influences fecal microbial-derived metabolites and markers related to gut integrity and inflammation in obese patients. METHODS: Microbiota (16S rRNA sequencing), long- and short-chain fatty acids (LCFA, SCFA), bile acids, zonulin, and calprotectin were analyzed in fecal samples obtained from obese patients included in a randomized, placebo-controlled trial. Participants received either 16 g/d native inulin (prebiotic n = 12) versus maltodextrin (placebo n = 12), coupled to dietary advice to consume inulin-rich versus inulin-poor vegetables for 3 months, in addition to dietary caloric restriction. RESULTS: Both placebo and prebiotic interventions lowered energy and protein intake. A substantial increase in Bifidobacterium was detected after ITF treatment (q = 0.049) supporting our recent data obtained in a larger cohort. Interestingly, fecal calprotectin, a marker of gut inflammation, was reduced upon ITF treatment. Both prebiotic and placebo interventions increased the ratio of tauro-conjugated/free bile acids in feces. Prebiotic treatment did not significantly modify fecal SCFA content but it increased fecal rumenic acid, a conjugated linoleic acid (cis-9, trans-11 CLA) with immunomodulatory properties, that correlated notably to the expansion of Bifidobacterium (p = 0.031; r = 0.052). CONCLUSIONS: Our study demonstrates that ITF-prebiotic intake during 3 months decreases a fecal marker of intestinal inflammation in obese patients. Our data point to a potential contribution of microbial lipid-derived metabolites in gastro-intestinal dysfunction related to obesity. CLINICALTRIALS. GOV IDENTIFIER: NCT03852069 (February 22, 2019 retrospectively, registered).


Asunto(s)
Inulina , Prebióticos , Fibras de la Dieta , Heces , Humanos , Inflamación , Obesidad , ARN Ribosómico 16S , Estudios Retrospectivos
17.
Sci Rep ; 11(1): 2627, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514774

RESUMEN

Several studies suggest that microbial alterations (dysbiosis) are intimately linked to chronic inflammation occurring upon aging. The aim of this study was to investigate the potential interest of a synbiotic approach (co-administration of a probiotic bacteria and a prebiotic dietary fibre) to improve gastrointestinal wellness and inflammatory markers in middle-aged people. Middle-aged subjects were randomized to take synbiotic (Bifidobacterium animalis lactis and fructo-oligosaccharides (FOS)) or placebo for 30 days. Stool frequency and consistency were improved in both placebo and synbiotic-treated volunteers while the synbiotic treatment significantly decreased the number of days with abdominal discomfort. Synbiotic treatment had no impact on mood dimensions, quality of life scores or the overall composition of the gut microbiota (16S rRNA gene sequencing of DNA extracted from stool). Importantly, plasma proinflammatory cytokines (interleukin (IL)-6, IL-8, IL-17a and interferon-gamma (IFNγ)) were significantly lower after 30 days of synbiotic supplementation. This effect appears to be independent of the gut barrier function. This study demonstrates that a combination of B. animalis lactis and the well-known prebiotic FOS could be a promising synbiotic strategy to decrease inflammatory status with improvement of gut disorders in middle-aged people.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Simbióticos/administración & dosificación , Anciano , Envejecimiento , Bifidobacterium animalis/fisiología , Biomarcadores/metabolismo , Citocinas/metabolismo , Método Doble Ciego , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida
18.
Sci Rep ; 11(1): 659, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436764

RESUMEN

Obesity could lead to metabolic dysfunction-associated fatty liver disease (MAFLD), which severity could be linked to muscle and gut microbiota disturbances. Our prospective study enrolled 52 obese patients whose MAFLD severity was estimated by transient elastography. Patients with severe steatosis (n = 36) had higher ALAT values, fasting blood glucose levels as well as higher visceral adipose tissue area and skeletal muscle index evaluated by computed tomography. Patients with fibrosis (n = 13) had higher ASAT values, increased whole muscle area and lower skeletal muscle density index. In a multivariate logistic regression analysis, myosteatosis was the strongest factor associated with fibrosis. Illumina sequencing of 16S rRNA gene amplicon was performed on fecal samples. The relative abundance of fecal Clostridium sensu stricto was significantly decreased with the presence of liver fibrosis and was negatively associated with liver stiffness measurement and myosteatosis. In addition, 19 amplicon sequence variants were regulated according to the severity of the disease. Linear discriminant analysis effect size (LEfSe) also highlighted discriminant microbes in patients with fibrosis, such as an enrichment of Enterobacteriaceae and Escherichia/Shigella compared to patients with severe steatosis without fibrosis. All those data suggest a gut-liver-muscle axis in the pathogenesis of MAFLD complications.


Asunto(s)
Hígado Graso/patología , Microbioma Gastrointestinal , Tracto Gastrointestinal/patología , Grasa Intraabdominal/patología , Cirrosis Hepática/patología , Músculo Esquelético/patología , Obesidad/fisiopatología , Adulto , Anciano , Diagnóstico por Imagen de Elasticidad , Hígado Graso/diagnóstico por imagen , Hígado Graso/microbiología , Femenino , Tracto Gastrointestinal/microbiología , Humanos , Grasa Intraabdominal/microbiología , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/microbiología , Masculino , Persona de Mediana Edad , Músculo Esquelético/microbiología , Estudios Prospectivos , Adulto Joven
19.
Gut Microbes ; 13(1): 1-16, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33461385

RESUMEN

The fermentation of dietary fibre (DF) leads to the production of bioactive metabolites, the most volatile ones being excreted in the breath. The aim of this study was to analyze the profile of exhaled breath volatile metabolites (BVM) and gastrointestinal symptoms in healthy volunteers after a single ingestion of maltodextrin (placebo) versus chitin-glucan (CG), an insoluble DF previously shown to be fermented into short-chain fatty acids (SCFA) by the human microbiota in vitro. Maltodextrin (4.5 g at day 0) or CG (4.5 g at day 2) were added to a standardized breakfast in fasting healthy volunteers (n = 15). BVM were measured using selected ion flow tube mass spectrometry (SIFT-MS) throughout the day. A single ingestion of 4.5 g CG did not induce significant gastrointestinal discomfort. Untargeted metabolomics analysis of breath highlighted that 13 MS-fragments (among 408 obtained from ionizations of breath) discriminated CG versus maltodextrin acute intake in the posprandial state. The targeted analysis revealed that CG increased exhaled butyrate and 5 other BVM - including the microbial metabolites 2,3-butanedione and 3-hydroxybutanone - with a peak observed 6 h after CG intake. Correlation analyses with fecal microbiota (Illumina 16S rRNA sequencing) spotlighted Mitsuokella as a potential genus responsible for the presence of butyric acid, triethylamine and 3-hydroxybutanone in the breath. In conclusion, measuring BMV in the breath reveals the microbial signature of the fermentation of DF after a single ingestion. This protocol allows to analyze the time-course of released bioactive metabolites that could be proposed as new biomarkers of DF fermentation, potentially linked to their biological properties. Trial registration: Clinical Trials NCT03494491. Registered 11 April 2018 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03494491.


Asunto(s)
Fibras de la Dieta/metabolismo , Ácidos Grasos Volátiles/análisis , Aerosoles y Gotitas Respiratorias/química , Pruebas Respiratorias , Quitina/metabolismo , Ácidos Grasos Volátiles/metabolismo , Heces/química , Heces/microbiología , Fermentación , Microbioma Gastrointestinal , Glucanos/metabolismo , Voluntarios Sanos , Humanos , Polisacáridos/metabolismo , ARN Ribosómico 16S/genética , Adulto Joven
20.
J Endocrinol ; 249(1): R1-R23, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33502337

RESUMEN

The gut microbiota is now widely recognized as an important factor contributing to the regulation of host metabolic functions. Numerous studies describe an imbalance in the gut microbial ecosystem in response to an energy-dense diet that drives the development of metabolic disorders. In this context, the manipulation of the gut microbiota by food components acting as prebiotics appears as a promising strategy. Several studies have already investigated the beneficial potency of prebiotics, mostly inulin-type fructans, on host metabolism and key intestinal functions including gut hormone release. For the last 20 years, several non-digestible compounds present in food have been shown to modulate the gut microbiota and influence host metabolism in essential organs involved in the control of energy homeostasis. To date, numerous reviews summarize the impact of prebiotics on the liver or the brain. Here we propose to describe the mechanisms by which prebiotics, through modulation of the gut microbiota and endocrine functions, modulates the metabolic cross-talk communication between the gut, the adipose tissue and skeletal muscles.


Asunto(s)
Tejido Adiposo/metabolismo , Sistema Endocrino/fisiología , Microbioma Gastrointestinal/fisiología , Músculo Esquelético/metabolismo , Prebióticos/administración & dosificación , Animales , Diabetes Mellitus Tipo 2/microbiología , Dieta , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Obesidad/microbiología , Receptor Cross-Talk
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA